EXTERIOR PRODUCTS OF HILBERT SPACES AND THE FREDOLM
DETERMINANT

ETHAN Y. JAFFE

Let H be a (separable) Hilbert space.! In this note we talk about the exterior products
A*H. The main application of this will be to define the Fredolm determinant det(1 + A),
for A trace class and to examine its properties.

1. EXTERIOR PrRODUCTS

Consider the space A*H for k € N, the (algebraic) vector space span of k-blades {v; A
- Avgiv,...,v, € H}. Formally, A*H is the quotient of the algebraic tensor product
H®* by the ideal generated by {v; ® -+ @ vy: v; = v; for some i # j}. Observe that A¥H
is by definition characterized by the property that whenever ® : H* — X is an alternating
multilinear map of vector spaces, then there exists a unique map A¥*H — X given by

Doy A Avg) = Py, ..., v)
on k-blades. We equip A*H with an inner product defined by
(1.1) (V1 A= ANvg,wy A== Awg) = det((v;, w;))

on k-blades and extending by linearity. Here, det(a;;) denotes the determinant of the matrix
whose (i,7)" entry is a;;. The space A*H is not a Hilbert space, so we hereafter replace
A*H with its complition under this inner product, which is a Hilbert space. When we need

to refer to the original, algebraic space, we will use the notation A*H.
The inner product (1.1) is not obviously well-defined, as k-blades don’t have unique rep-

resentations in A¥H (in fact a k-blade may be written as the sum of other k-blades!). We
need to prove that it is well-defined.

Lemma 1.1. The inner product (1.1) is well-defined on ;\VkH, and hence defines an actual
mmner product.

Proof. Fix wy, ..., w, € H, and consider the map ® : H* — C defined by
O (vy,. .., v5) = det((v;, wy)).

Then @ is is multilinear and alternating, and so by definition descends to a well-defined map
from A¥H — C. This shows that (v; A -+ Avg,wy A -+ A wg) is well-defined in the first
argument. Since it is clearly conjugate symmetric, it is well-defned in the second argument,
and so is well-defined overall. 0

Lemma 1.2 (Properties of A¥H.). The following hold:

IThe separability assumption is mostly for notational convenience and to avoid having to talk about
strongly convergent nets of projections rather than more pedestrian convergent sequences.
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(i) Suppose that for 1 < i < k, v!" is a sequence of vectors in H converging to v; € H.
Then
VA AU = 0 A A g
(ii) The span of the k-blades {vy A -+ A vy} is dense in A*H;
(iii) If ey, e, . .. is an orthonormal basis of H, then A¥H has an orthonormal basis of the
form B ={eiy, N Ney g <+ < g}

Proof. Let us prove (i). We compute
[0 A Aog — o1 Ao AP = det((u], o)) + det((v;, v;)) — det((vf, v;) — det((vs, v])).
Since the determinant of a matrix is continuous in its entries, as n — oo this converges to
det((v;, v;)) + det((v;, v)) — det((v;, v;)) — det({v;, v;)) = 0.

(ii) is true since by definition ARH s the span of k-blades, and this space is dense in its
completion, A*H.

Now let us prove (iii). It is clear that § is an orthonormal set. We show that it is a basis.
Suppose vy, ..., v € H and for all ¢

v; = lim w;
n—oo

for w € span{ey,eq,...} is in the vector space span (i.e. is a finite linear combination).
From (i), we know that

Wy A ANwp = v AU

Each k-blade wf A --- A w} belongs to span 3, so this shows that span 3 is dense in A*H,
which is sufficient. O

We now show that a bounded linear map A can be used to define an operator A¥A on
A*H, and that this assignment is functorial.

Theorem 1.3. Let A: H — H be bounded. Then for each k there exists a unique bounded
operator A¥A : AFH — A*H such that A*A acts on k-blades by

(AFA) (g A=) = Avg A -+ A Auyg.

Furthermore, ||AkA|| < ||A||*, and the map A* : B(H) — B(A*H) is continuous. Explicitly,
for A,B € B(H) (and k> 1)
(1.2) IA*A — A*BI| < k|| A — B[ max(||A],, | B])*~.
The map A* is functorial in the following sense:
(i) A*(AB) = AFAAN*B for A, B bounded;
(ii) if A is invertible, then A*A is invertible with inverse AFA~!;
(iii) (AFA)* = AFA*;
(iv) if 11 : H — K is the orthogonal projection onto K, then AFII is the orthogonal
projection onto A¥K | the closure of the span of k-blades {vy A -+ Avp:v; € K, 1 <
i < k};
(v) if A is positive, then AFA is positive;
(vi) [AFA| = A*|A].



If A is additionally trace class, then A*A is also trace class, and
IAJIf
k!

Futhermore, the map A* : (*(H) — (*(A*H) is continuous, with explicit bounds for A, B
trace class (for k > 1)

||AkA||1 <

max (|| All1, || B][1)F!
(i —1)!

To prove this, we need the following technical lemma:

(1.3) IA*A—A"Blly < [|A - Bl

Lemma 1.4. Let H be a Hilbert space and suppose X C H is dense. Let A, be a sequence
of uniformly bounded operators such that A,x converges pointwise for each x € X. Then A,
converges strongly to a bounded operator A, and || Al < limsup||A,||.

Proof. We show that for all v € H, A,v is Cauchy, and thus A, converges strongly to a
linear map A. Fix € > 0. By density and uniform boundedness, there exists x € X such
that for all n € N, ||A,v — A,x|| < /3. Now for N large, if n,m > N, we may assume that
|Ane — Apzx|| < e/3. Thus if n,m > N

| A — Apv|| < JApv — Apz|| 4 ||Anz — Apz|] + [|Amy — Apz|| < e.
For v € H, and € > 0, again choose x with ||A,z — A,v)|| < e. Then

|Av]| = lim ||A,v] <limsup||A,v — A,z| + || Anz|| < e+ limsupl|Al|||z]|.

—infty n—00 n—00

Since ||z|| < e+ ||v||, it follows that
[Av][ < (1 + limsup||A[[)(e) + lim sup|| Al}[|v]].

n—oo n—oo

Taking ¢ — 0 shows that ||Av|| < limsup,,_,.||Al/||v||, which shows that A is bounded and
| A|l < limsup|| Ay O

Proof of theorem 1.3. This theorem has many different parts, so we prove them separately.
Part 1: uniqueness and functoriality. Since the span of k-blades is dense, uniqueness
follows immediately. By density and linearity, functoriality will follow if we can check each
statement on a basis. For (i), observe that for any k-blade vy A - -+ A vy,

A*(AB)(vy A -~ Avg) = (ABuy) A --- A (ABuy)
= A*A((Bvy)) A --- A (Bwy))
= ANAN B(vy A+ Awy).
Property (ii) follows from (i), since
AFATIARA = AF1 = AFANFATY,
and A*1 is certainly the identity since it maps any k-blade to itself. For (iii), observe that
for any other k-blade wy A - -+ A wy,
(APA(vy A= Aog),wy A - Awy) = det((Avg, w;)) = det({v;, Aw;))
= (vl/\--~/\vk,AkAw1/\---/\wk.
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For (iv), observe that A*II is self-adjoint (from (iii)) and idempotent (from (i)). Thus AII
is the orthogonal projection onto its range. Certainly A¥K C range(A*II), since A*II acts as
the identity on the wedge product of vectors in K. We now show that its range is contained
in AFK. If v =v; A--- Ay is a k-blade, then we may write v; = u; + w; where u; € K and
w; LK. Thus

V=u N\ Nug +w,
where w is a sum of wedges at least one of whose factors is orthogonal to K. Thus
Ao =ug A - Aug + 0 € AFK.

It follows that the range of A*II on the span of k-blades is contained in A*K, and hence the
range of A*II on all of A*H is contained in A*H, since the span of k-blades is dense and
A*K is closed by definition.

For (v), first assume that A is compact. Suppose ey, €, . .. is an orthonormal basis for H of
eigenvectors of |A|. Then {e;, A---Ae;, 41 < -+ < i} is an orthonormal basis of eigenvectors
of A*A. Since each associated eigenvalue is positive, it follows that A¥A is positive. If A is
not compact, then fix any orthonormal basis eq,es,... of H, and let II,, be the orthogonal
projection onto span{ey, ..., e, }. Then II, AIl, is positive, and so A*IT,, A¥ AATIL, is positive.
The operator Agll, is by (iv) the orthogonal projection onto span{e;, Ae;, : iy < ---ip < n},
and thus converges strongly to 1. Thus AFIL, A* AA*TI, converges strongly to A¥A. Since a
strong limit of positive operators is positive, A*A is also positive.

For (vi), observe first that

(AF|A])2 = AF|A]? = AFA*A = (AFA)*AF A,

and A¥|A| is positive. Thus A¥|A| is a positive square root of (A¥A)*A*A = |A*A|?, and thus
must coincide with |[A*A|.2

Part 2: Existence. Now let us show existence. We first suppose that A is positive and
compact. Let eq,es, ... be an orthonormal basis of eigenvctors of A, and suppose Ae; = \e;.
Suppose )\ is the largest eigenvalue. Let § = {e;, A--- Ae; iy < --- < ip}. We first define
amap B :span 3 — A*H, and then show it is bounded, and thus B extends to a bounded
map B : A¥H — A¥H. We then show that

By A+ ANvg) = Avp A -+ A Avyg,,

and thus we can define A*A = B. For a = (ay,...,q;) an increasing k-tuple, set e, =
€ay N -+ A€y, and Ay, = Ay, -+ Ag,. Define B(e,) = Anpeq, and then extend by linearity.
Thus, if v =) aqe, is a finite linear combination,

1Bull> =) laallBeall® = Y laalXs < AF¥l0]?,

and so B extends to a bounded operator. In fact, this shows that || B|| < \F = || AJ|*.
If v,...,vx € H are finite linear combinations of the e;, then it is easy to check that

Bog A= ANvg) = Avg Aveeee A Avg.

Indeed, if P and Q are positive operators on a Hilbert space, and Q2 = P, then Q = v/P. To show this,
suppose a > 0 is large enough so that o(P) C [0,a] and o(Q) C [0,+/a]. Suppose p,(x) are polynomials
converging to /z uniformly on [0,a]. Then p,(Q?) = p,(P) — v/P. On the other hand, p,(2?) — = on
[0,1/a], and so p,(Q?) — Q.
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Indeed, suppose v; = > a{ e; for all i. Let N be the large index such that a)¥ is nonzero for
some i. Let T} denote the set of injective maps from {1,...,k} — {1,...,N}. Then

k k
BoyN---ANvy,) =B (Z Ha?(i) /\eo(i)>
i=1

o€Ty i=1

k k
= Z H a?(i) /\ )\ieg(i)
=1

o€Ty i=1

k k
= Z H a?(i) /\ Aea(g)i
=1

UETk i=1

Now if vy, ..., vy are not finite linear combinations, then we can write them as a limit of finite
linear combinations, and use the fact that B and A are bounded, together with lemma 1.2.

Now assume that A is positive, but not compact. If ey, eq, ... is any orthonormal basis of
H, let II,, denote the orthogonal projection onto span{ey,...,e,}. Then I, AIl, is positive
and compact, and so A¥(IT, AIl,) exists. Using lemma 1.2 and the definition of A*(II, AIL,)
on k-blades, it follows that for any k-blade vy A --- A v

AF(IT, AL oy A -+ A vy, = (I ATyoy) A - -+ A (I, AL, Avg) — Avyp A -+ A Auy,.
Thus by linearity A*(II,, AIl,) converges pointwise on the span of k-blades. Also,
IAFTL ATL, || < [|TT, ATL || < [|AJJ*

for each n. Thus, since the span of k-blades is dense, by lemma 1.4, A*(II, AIl,) converges
strongly to some operator B. Since we have already shown that

B(vy A -+ Awvg) = lim AP(ILAIL)(vy A~ Avg) = Avp Avee e - A Auvy,

for any k-blade, we may set A¥A = B.

Now let A be a partial isometry. Let e, e, ... be an orthonormal basis of H which is the
result of taking the union of an orthonormal basis of ker A and ker A+ (and then relabelling),
and let 3 be as above. As above, we first define a map B : span 3 — A¥H | show it is bounded,
and that it behaves correctly on k-blades. Define

B(ey) = Aeqy, N+ A Aey,, .
If @ and o are increasing k-tuples, then

(Beg, Bey) = det({A* Ae,,, 6a3>)-

Now A*A is precisely the projection onto ker AL. Thus, if any e,, € ker A, (Be,, Bel,) = 0.
Otherwise (i.e. all e,, are in ker A1), it is equal to

det((ea;; €ar)) = (€a, €ar)-

Now, if v = ) aye, is a finite linear combination, let S be the collection of those a such all
€a; € ker AL, Then

IBull> =) " aala (Beq, Bel,)
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= Z aaa_o/<€a7ea/>

a€esS,a’

=D laa® < ol

aesS

It follows that B is bounded and has norm precisely 1 (which is of course also ||A||*). The
proof that B behaves correctly on k-blades is the same as in the case that A is compact and
positive. Thus in this case, too, can we set A*FA = B.

Now for the general case. Suppose A is bounded. Write A = U|A| the polar decomposition,
where U is a partial isometry and |A| is positive. Define

A A = AFUAR| A,

both factors of which exist. We need to show that A¥A behaves properly on k-blades. But
this is obvious, as for any k-blade vy A -+ A vy,

AFUNF| Aoy A -+ Ao = AU (JAJog A=+ A AJog) = (UJAJur) A -+ A (U] Alwg).

Certainly
IARA] < [ARU[ARALL < [IJAN* = Al

Part 4: Continuity. Suppose A, B are bounded operators. Let ey, es,... be an or-
thonormal basis of H, and let II,, denote the projection on {e;,...,e,}. Since A*II, is the
projection onto span{e;, A e;, : iy < ---ix < n}, AFIL,(A*A — A*B)A*II, converges in the
strong operator topology A¥A — A¥B. Since the operator norm is lower semicontinuous in
the strong operator topology, it suffices to prove (1.2) with A and B replaced by II,, AIl,
and IL, BII,,, respectively. In other words, we may assume that H is finite-dimensional with
dim H = n (and hence k < n since the spaces AVH = 0 for k > n). For t € [0,1], let
C(t) =tA+ (1 —t)B. For a an increasing k-tuple and v € A*H, define

Va,v(t) = <Ak0(t)€a,'l)>,

which is smooth on [0, 1] (since v may be expanded in a finite basis of A*H). In particular,

(1.4) (A*A = A*B)ea, 0) = qanl(1) — Yo (0) = / 7L (8) dt.

We now compute 7, ,,. For 1 <4 <k, denote by é,, the wedge of all e,, (in order) except e,,.
Write A — B = V|A — B|. Since H is finite-dimensional, we may assume that V' is unitary.
We may also assume (by the spectral theorem) that the basis {e1,...,e,} of H is a basis of
eigenvectors for |A — B|, with eigenvalues A\; > 0. Write Ve; = f;, so that {f1,..., f,} is an
orthonormal basis. Use the notation f, = f,, A--- A f,, for an increasing /-tuple o. Using
that the wedge product is continuous, it is easy to check that

k

Vé,v(t) = Z(eal AREE Aeai_l /\Cl<t)eoéi N Cai1 N Neqy, U>
=1
k
=) (=1)"(A = B)ea, AN C(t)eq,, )
=1
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— 1) N, (far AATIO(H)ES, V).

||M»

For all j, the wedge map fj/\: A*'H — A¥H has norm 1. Let Ly, denote its adjoint which
also has norm 1. Then we can rewrite the previous display as

k

(1.5) Yau(®) = D (1) (AT O(W)eq, ).

i=1

For v € A*H, let v, be the coefficients in the expansion v =3 v,e,. Then, from (1.4),

|A*A — A*B||= sup ZUO‘ (N*A — A*B)e,, w)
(1.6) vll=[lw||=1
< sup / ) dt|dt.
[vll=[lw||=1
Fix some v, w with ||v|| = |Jw| = 1. Plugging in (1.5) for 4, ,,(t) and applying Cauchy-

Schwarz inequality yields
(1.7)

> varlnlt) dt| =

The first factor is bounded by
VE(sup \)[[v]| = VE[|A - B

For the second, we may rewrite the sum instead over all pairs (j, 5), where 1 < j < n, and
f is an increasing (k — 1)-tuple none of whose terms is j. This yields

Z| (A0t ea, v, )P —Z| (es, A"1O (1) 1pw)]*.

1/2 1/2
2) <Z|Ak‘10(t)5a7wfaiw>|2> :

a,t

< (Z |Ua|2|/\ai

a,l

> vaan(t)

Taking the sum first over /3, one bounds this by
DIy gl < [ATO@))? ZH%WHQ
J

The first factor is bounded by ||C(¢)*[|?*~Y = ||C(t)||>*~1). For the second factor, expand
w = Y wafo. Notice that ¢y, fo = 0 if j is not a term in . Otherwise, ¢y, fo = £ for, where
o/ is the increasing (k — 1)-tuple obtained from a by removing j (the sign depends on j and
). Thus, (ty, fa,ty, f3) = 6a=p, the Kronecker ¢, and

leywl® =) wals(iseas tres) = D lwal?,
a,f =Y
where the sum ranges over all those o one of whose terms is j. Thus

> legwll? = ZZ|wa|2
- A

adj
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In this sum, each term |w,|?, for an increasing k-tuple «, appears precisely k times: once for
each j = a4, 1 < i < k. We conclude that

D llepwll? = kY fwal* = Klfw]|* = .
7 a

Putting it all together, the second factor on the last line of (1.7) is bounded by ||C(¢)|~'Vk,
and recalling the bound on the first factor, (1.7) is bounded by
kKIA=BllIC@l*.
Now
IC@I < (L= D)[A[l + ]| BI| < max([|All, || B])-
Hence, from (1.6),

1
IAA — A*B| < /0 kA — Bl max(||All, | BI)* dt < k[|A— B|| max(||All, | BI)*,

which is the desired bound.

Part 5: Trace class operators. Now let us suppose A is trace class. We prove that
AFA is trace class, i.e. [AFA| is trace class. We know that |[A*A| = A¥|A|, so replacing A
with |A|, we can assume that A is positive. Since |A| is compact, by the spectral theorem
we can find eq, es, ..., an orthonormal basis of eigenvectors of A, and suppose Ae; = \e;.
Let S ={e;, N---Ney iy <--- <ig}. Then

Tr(AFA) = ) Ny,

11 <o <tp
n— 00
11<-<ip<n

_ 1
“lm o 2 2 e

i1<<ip<n  o€Sy

. 1
= Jim 2 do A

(41,-.-,8k )i <m, has distinct entries

.1
Sty 2 ek

Thus A is trace class and ||Al|; < ”'2{'116.

Part 6: Continuity in the trace norm.The proof starts very similarly to part 4,
the proof of the continuity in the operator norm, and we use the same notation. Suppose
A, B are trace-class operators. Let eq,es,... be an orthonormal basis of H, and let II,
denote the projection on {ey,...,e,}. Recall that A*II, is the projection onto span{e; A

et i1 < ---i < n}. We will show below in lemma 1.5 that this means that, I1,AIl, — A,
8




I1,,BII,, — B, AFII, AIl,, — A*A, A*II, BII,, — A*B, all in the trace norm. Thus, it suffices
to prove (1.3) with A and B replaced by I1,, AIl,, and II,, BII,,, respectively. In other words,
we may assume that H is finite-dimensional with dim H = n.

Let C(t), Yaw(t), fa, Ai be as in part 4. Write A¥A — A¥B = U|A*A — A*B| for the polar
decomposition, so that [A*A — A¥B| = U*(A*A — A*B). Then, from (1.4),

|A*A — A*B||, = | Tr(U*(A*A — A*B))|

> (A*A— A*B)ey, Ue,)

Z 7;,Uea (t)

1
S\/
0

We will bound the integrand uniformly. Plugging in (1.5) for the integrand yields

(1.9) D Yawve) =D (DTN (ATIOWM)EG, 1, Uea)-

a,i

dt.

We may rewrite the sum instead over all pairs (7, 3), where 1 < j < n, and § is an increasing
(k — 1)-tuple none of whose terms is j. To do so, notice that e, = (—1)"e,. A €,,. Thus,
the sum is equal to

(1.10) D Vawet) =D AN TICWM)es, 1, Ules Aeg)).
a 3B
For j fixed, let U; : A¥"'H — AF~'H be the map w — v7,U(e; Aw), which has norm at most

1. Let T';: H — H be the projection off of e;. Then A*~'T";es = e precisely when j is not
an index in 3, and is 0 otherwise. Then, for j fixed, the the sum over f is just

Tr((A*'T,UA T C () A'T),
which is bounded by

||Ak—1r||2||Ak—1U*||||Ak—1C” < HCngil
j i (IS NTE

using the bounds we have proven previously. Thus, (1.10) is bounded by

> Yoved ) (ZA ) It

_ o >H1
= IA =Bl oy

ZA Tr((AF'T;UFARLC(H)AR'T )

(1.11)

However,

ICWOI: < (1 =D[[All + | B[y < max([[All, | B][1)-
Therefore, returning to (1.8) and using (1.11)

|A*A — AFB|| < t




! max (|| A||1, | B|[1)**
0 .

max (|| Al | B]l1)*
(k—1)! ’

which is the desired bound. O

<|[lA—=Blh

We now prove the lemma about convergence in the trace class, which we will also use
later.

Lemma 1.5. Let H be a Hilbert space, and let E; C Ey C --- be a family of strictly
increasing finite-dimensional subspaces of H whose closure is dense. Let I1; be the projection
on E;. Then A(1 —11,) — 0 and (1 —I1,)A — 0 in the trace class norm. In particular,
II,,AIl,, — A in the trace-class norm.

Proof. The second claim follows from the first by bounding
L, ALL, — Ally < [[(H, — DAL + AL, = 1)1

The statement for (1 —II,,) A follows from that for A(1 —II,,) by taking adjoints.
Write A = U|A] and A(1 —11,,) = V]A(1 — II,,)| for the polar decompositions. Then

[A(L~ L) = V*UA|(1 ~ IL,) = (V*U|A[")(JA]2(1 ~ IL,).

Set W = V*U. We may pick an orthonormal basis {e1,..., ey, } of Ej, extend it to an

orthonormal basis {ej,...,en,} of Es, etc, obtaining an orthonormal basis ey, ey, ... of H,
such that for m; = dim E;, {ey,...,en,} is an orthonormal basis for E;. Then
IA(L =Tl = [ Te(JAL = TL)))] = D (A1 = TL)e;, [A] /2 W e;)
i=1
= Z <|A‘1/26i7 |A|1/2W*€i>
, 0 1/2 0 1/2
< <Z |||A|1/26i||2> <Z|||A|1/2W*6i||2> :

The square of the second factor is bounded, uniformly in n, by
DI er|? = Te(WIAIW*) < [ Al
i=1

The square of the first factor is

o0

S ((lAlese.),

T=Mn

which goes to 0 as n — oc. 0
10



2. THE FREDHOLM DETERMINANT
We can now define the Fredholm determinant.

Definition 2.1. Suppose A : H — H is trace class. Then define
detpa(1+ A) =Y Tr(AFA),
k=0

Allk
JALE gy

interpreting Tr(A°A) = 1. This makes sense since by theorem 1.3 | Tr(AFA)| <
all k£, and hence the defining series is absolutely summable.

Let us check that this agrees with the usual definition in the case that H is finite-
dimensional. In fact,

Proposition 2.2. Suppose K C H 1is finite-dimensional, and A = IIAIl, where II is the
orthogonal projection onto K. Then, with det,s interpreted as the usual determinant of a
linear map between fininite dimensional spaces,

detys((1 + A)|k) = detra(l + A).

Proof. Suppose dim K = n. Fix k > n, and a k-blade v = v; A - -+ Av,. Write v; = u; + wy,
where u; € K and w; L K. Then v = u 4+ w, where u is a wedge of k + 1 vectors in K, and is
hence 0, and w is a sum of wedges of terms such as at least one constituent factor per term
is perpendicular to K. So A*Av = 0+ A¥Aw = 0. So A*A = 0 if k > n. Therefore the sum
> ey Tr(A*A) only goes up to k = n. Suppose e1,...,€,,€n41,... is an orthonormal basis
of H such that ey, ..., e, is an orthonormal basis of K. Reall that

A1+ A)er A+ Nep = detys((1+ A)|g)er A+ Aey.
On the other hand

AN1+Ae A Ne,=(1+A)er A--- AN (14 A)e,.
In the expansion wedge product, each term is a wedge of factors of the form Ae; or e;. Set
BY = 1 and B' = A. Let ¢ C {1,...,n}, and interpret o : {1,...n} — {0,1}, where
o(i) =11if i € 0. Then

A"(14A)es A---Ne, = ZBa(l)el A - /\Ba(n)en'

For a fixed o = {iy, -+ i1} € {1,...,n}, with {1,....,n} \ 0 = {Jks1,---,Jn}, the corre-
sponding term above is equal to
(21) + Aeil A -Aeik N 6jk+1 VANCIVAN €j, = :l:(AkA)(e“ VANCIVAY eik) VAN (

with the sign 4+ depending on how many swaps are required to turn ey A - -+ A €4(,) into
ey N+ Ney Nej. A+ Nej,. Let us assume without loss of generality that 7, < --- <y,
J1 < --- < Jjg. Expanding in an orrthonormal basis, we may write

(2.2) (A*A)(es, A+ Neyy) = Z (NFA) (e, N+ Nei ) eo, N Negeo N+ Ney,.

£1<~--<Ek

N A,

€kt

Let us examine the term corresponding to {¢; < --- < ¢;} in this sum. If any ¢, > n, then
this term is 0, since A is 0 on the orthocomplement to K. If ¢, = j, for some p and r, then

the wedge product of this term with e;, ., A---Ae;, is 0. Thus the only term in (2.2) which
11



survives after wedging with e; , A--- Ae;, is the term corresponding to £, = i, for all p.
Plugging (2.2) into (2.1) and using this fact yields

ZIZA€Z‘1 /\---Aeik/\ejkﬂ /\"'/\Gjn

= :|:<<AkA>(€“ VANCIIRIVAN eik)7€il A A eik>€il A A €Z‘k A ejk+1 JANEREIVAY ejn

= ((N*A)(ey A+ Nei) e A Neg et A+ Aey.

Since
<(AkA)(641 VANKIERIVA egk), e, N N €gk> =0
if any £, > n, summing
(N*A)(es, A=+ Nei) e A Neg et A--- Aey

over all subsets 0 = {i; < --- < i} C {1,...,n} is the same as summing it over all sets
{iy <--+ <} €N, and thus the sum equals

Tr(A*A)es A --- Ae,,.
Recalling the definition of B’ we have thus shown that
Z B°We, Ao A BT Mg, = Tr(AkA)el A Ney,.
H#Ho=k

The sum of this over all £ < n is thus on the one had equal to detys((1+A)|k)e1 A---Aey, as
we have shown, and is on the other hand equal to (3-;_, Tr(A*A)) e; A+ -+ Ae, = detpa(l+
A). O

We will use proposition 2.2 to approximate the Fredholm determinant of an operator by
finite-rank approximations. Fortunately, we have lemma 1.5 which will guarantee that the
finite-dimensional approximations converge in the trace-class norm. Using the continuity of
AR 0 (H) — €.(A*H) will allow us to show that the Fredholm determinant is continuous,
and thus the finite-dimensional approximations converge. Indeed:

Lemma 2.3. The Fredholm determinant is continuous in the trace-class norm. FExplicitly,
if A and B are trace class, then

|det(1 + A) —det(1+ B)| < ||A — B||1 exp(max(||Al|1, || Bl|1))-

Proof. This follows easily from theorem 1.3. Indeed,

max(|| A+, |1 B][1)" !
(k— 1)

| det(1 4+ A) — det(1+ B)| <> | Tr(A*A — A*B)| <) ||A— BJ|x
k>1 k>1

(the k = 0 term vanishes since Tr(A°A) = Tr(A°B) = 1). The lemma follows. O

Theorem 2.4 (Properties of the determinant). Suppose A, B are trace class. Then

(1) det(1 + A*) = det(1 4+ A);
(i1) det(1 + A)det(1 + B) =det((1 + A)(1 + B));
(iii) if A is self-adjoint with eigenvalues A1, Ag, ..., then det(1+ A) = [0, (1 + \i);
(iv) if X is invertible, then det(1 + X AX 1) = det(1 + A);
(v) det(1 + A) =0 if and only if 1 + A is not invertible;
(vi) exp(A) — 1 is trace class and det(exp(A)) = exp(Tr(A)).
12



Proof. Let e, e5 be an orthonomal basis for H and let II,, be the orthogonal projection onto
span{ey, ..., e, }.
Let us first prove (i). For each n, oberserve that
((1 + HnAHn)‘lfange(Hn))* = (1 + HnA*Hn)’range(Hn)'
It follows from proposition 2.2 that
det(1 + I, A™IL,,) = detys(((1 4 I, AIL, ) |range(1,)) ™)

— detus (1 + T, ATL, [yange(rt,y) = det(1 + 1L, AIL).

By lemma 1.5, 1L, All,, and II, A*II,, converge to A and A*, respectively, in the trace class
norm, and thus by lemma 2.3, det(1+11,, AIl,) — det(1+A) and similarly det(1+1L,BIL,) —
det(1 + B). Taking limits in (2.3) proves (i).
Now let us show (ii). Again from proposition 2.2, for n > N
det(1 + IT,AIL,) det(1 + II, BIL,) = det(1 + IT,AIL, + I1, BIL, + II,AIL, BIL,).

As above, the left-hand side converges to det(1+ A) det(1 + B). For the right-hand side, we
know that II,, AIl,, and IL,, BII,, B converge to A and B in the trace-class norm, so to establish
that the right-hand side converges to det(1 + A+ B + AB) = det((1 + A)(1 + B)), we just
need to show that II,, AIl, BIl,, = AB in the trace-class norm. Indeed, we may bound

11, ALL, BIl,— ABl|y < || (I —1) Al [[1L, BILy |4 | A(I = 1) [+ [ BIL, |+ [ A[[ | B(ITn = 1) [y — 0.

Now let us show (iii). Assume without loss of generality that e, ey - - are eigenvectors of
A, and that Ae; = \;e;. Then from proposition 2.2

(2.3)

n

det(1 + I, ATL,) = [ (1 + \).
i=1
Taking n — oo as usual (and using that ) |\;| < oo) shows (iii).
Next let us show (iv). Let K, = range(Il,), and let I';, be the orthogonal projection onto
K] = X(K,). We know from proposition 2.2 that
det(1 4 T1, ATlL,) = detys((1 + I1,, AL, |k,)
= detys(X| g, (1 + I, AIL,) 5, X k1)
= detys t((1 + XIL,AILX 1) 1)
= det(1 + (T, X 1L, AIL X 'T,) | rcr ) = det(1 + I, XTI, AITl, X 'T,).
As usual, the left-hand side converges to det(1 + A), and the right-hand side converges to
det(1 + XAX 1Y) provided T,, := ', XTI, AIl, X T, converges in the trace-class norm to
XAX~!. As in the proof of lemma 1.5, we may take an orthornormal basis fi, fa, ... such
that fi,..., f, is a basis of K, and thus I, is the orthogonal projection onto {fi,..., fn}
Observe that by definition I', X1I,, = XII,,. Therefore
|17, — XAX 1 < XI(IL, — DA T X T,
+IX AL, = DX Tl + [ X[HAX (1 = Ta)]ls — 0
(recall that AX ! is trace class). This shows (iv).

Finally we show (v). Suppose 1 4+ A is not invertible. Since 1+ A is Fredholm of index

0, it follows that 1 + A has closed range, and dimker(l + A) = dimrange(1 + A)*. In
13



particular, 1+ A has a null space containing at least one unit-norm vector e;. Extend e; to an
orthonormal basis eq, e, ... of H. Let II,, be the projection onto ey, ..., e,. By assumption,
Ae; = —ey. Thus I1,,All,e; = —eq, and so (1 + 11, AIl,)e; = 0. Thus 0 = det(1 + IT, AIL,).
As usual, this converges to det(1 + A), which shows that it is 0.

Now suppose det(l + A) = 0. Then, by (i), det(1 + A*) = 0, and so by (ii), det((1 +
A)*(14+A)) =0, and thus det(1+ (A*A+ A*+ A)) = 0. Write (A*A+A*+A) = P. Then P
is self-adjoint, P is trace class, and det(1 + P) = 0. Thus, by (iii), [[;2,(1 + A;) = 0, where
A; are the eigenvalues of P. If none of the \; were —1, then since > |\;| < oo (since P is
traceclass), [[.2,(1 + A;) # 0. Thus, at least one of the A\; = 0, and so 1 + P has non-trivial
kernel, and hence 1 + A does, too.

Now let us show (vi). By definition

H.

k=1

exp(4) — 1=

Since || A*||; < [JA*7|||A||1, this sum converges absolutely in the trace class norm, and thus
converges to a trace-class operator. From proposition 2.2 and properties of the validity of
the formula in finite dimensions,

det(exp(I1,AllL,)) = exp(Tr(IL,AIL,)).
From lemma 1.5, the right-hand side converges. To show the left-hand side converges, we

need to show that ||exp(A) — 1 — (exp(II,,AIlL,) — 1)||; — 0. By definition, we may control
this by

k! k!

Let us control the numerator of each term. With the usual trick, one has
k—1
| AL, — A < STYAIP (I, — 1) AJL T A=+ AP A = L),
§=0

< (k + DIJA]" max([| (1 — IL,) All1, A1 = IL,)[|1)-

i |(OT, ATL, ) =AMy i | (T, A)*TL, — Ay
k=1 k=1

Therefore

> k
llexp(A) — exp(IL, AIL,) ||y < max(||(1 —IL,)A|,[|A(1 —1IL,)[) Z (k+ 1k)'"AH ).

k=1
The sum converges, and the factor out front converges to 0 by lemma 1.5, which proves the
claim.

O

Let us end this note by briefly addressing derivatives. Suppose a < b € R and A(t),
t € [a,b] is a family of trace-class operators, differentiable at t = t,,>.

Proposition 2.5 (Jacobi’s formula). If 1+ A(to) is invertible, then det(1 + A(t)) is differ-
entiable at t = ty and

det(1 4+ A(t)) |z, = det(1 + A(to)) Tr((1+ A(te)) " A'(t0)).

3Here, differentiability means that there exists a trace class A’ (to) such that A(tg+h)—A(to) = A'(to)+ Ry,
where ||Rpl||1 € o(h)
14



Proof. Without loss of generality, let us assume that t, = 0. To start off, let us take the
special case A(t) = tB, for some trace-class B. Then A’(0) = B. By definition,

det(1+tB) = ZTr (A*tB).

Testing on k-blades, it is clear that A¥tB = tkA’“B Therefore,

B
|det(1 +tB) — det(1 4 0) — Tr(B) |<7§22:t’C 2Tr(AFB <t2<ZH H1>’
k=2

k=2

which is certainly in o(t) as ¢ — 0. Now assume A(t) is some aribtrary curve differentiable at
0. Since A(t) is differentiable, we may write A(t) = A(0) +tA’(0) + R, where || R[]y € o(t).
Thus,

(1+A0) 1+ A(t)) = (1 + A0)) (1 4+ A(0) +tA(0) + Ry)
=1+t(1+ A0)"A(0) + (1 + A0) 'R,
is of the form 1 + K, where K is trace-class. In particular
det(1 + A(t)) = det((1 + A(0))(1 + A(0)) (1 + A(1)))
= det(1 + A(0))det(1 + (1 4+ A(0)) A (0) + (1 + A(0)) ' Ry).
By lemma 2.3,
| det(1 4+ #(1 4+ A(0)) T A'(0) + (1 + A(0)) ' Ry)— det(1 + t(1 + A(0)) "1 A'(0))|
< (1 + A(0)) " lo(t) exp(Cy),
where
Cy = max([[f(1+ A(0)) L A(0) + (1 + A©0) " Rl #(1 + A(0)) " 4 (0)]})
< (1 4+ A0) L (1AO0)[l1 + o(1))
is uniformly bounded as ¢ — 0. This shows that
| det(1 4+ #(1 4 A(0))TA'(0) + (1 + A(0)) ' R;) — det(1 + (1 + A(0)) "t A'(0))] € o(t),
and so
det(1 4 ¢(1 + A(0)) LA (0) + (14 A(0))*R,) — 1 — Tr((1 4 A(0))"*A'(0))
= det(1 +¢(1 + A(0)) 1 A(0)) — 1 — Tr((1 + A(0)) "t A’(0)) + o(t).

But by the special case, this is just in o(t). Thus, det((1+ A(0))~*(1+ A(t)) is differentiable
with derivative Tr((1 + A(0))~*A’(0)), and so

det(1 + A(t)) = det((1 + A(0)) det((1 + A(0)) (1 + A(2))
iss differentiable, too, with derivative
det((1+ A(0)) Te((1 + A(to)) " A'(0)).
as desired. O

15



	1. Exterior Products
	2. The Fredholm determinant

