EXTERIOR PRODUCTS OF HILBERT SPACES AND THE FREDOLM DETERMINANT

ETHAN Y. JAFFE

Let H be a (separable) Hilbert space.^{[1](#page-0-0)} In this note we talk about the exterior products $\Lambda^k H$. The main application of this will be to define the Fredolm determinant det(1 + A), for A trace class and to examine its properties.

1. EXTERIOR PRODUCTS

Consider the space $\Lambda^k H$ for $k \in N$, the (algebraic) vector space span of k-blades $\{v_1 \wedge$ $\cdots \wedge v_k : v_1, \ldots, v_k \in H$. Formally, $\Lambda^k H$ is the quotient of the algebraic tensor product $H^{\otimes k}$ by the ideal generated by $\{v_1 \otimes \cdots \otimes v_k : v_i = v_j \text{ for some } i \neq j\}$. Observe that $\Lambda^k H$ is by definition characterized by the property that whenever $\Phi: H^k \to X$ is an alternating multilinear map of vector spaces, then there exists a unique map $\Lambda^k H \to X$ given by

$$
\Phi(v_1 \wedge \cdots \wedge v_k) = \Phi(v_1, \ldots, v_k)
$$

on k-blades. We equip $\Lambda^k H$ with an inner product defined by

(1.1)
$$
\langle v_1 \wedge \cdots \wedge v_k, w_1 \wedge \cdots \wedge w_k \rangle = \det(\langle v_i, w_j \rangle)
$$

on k-blades and extending by linearity. Here, $\det(a_{ij})$ denotes the determinant of the matrix whose $(i, j)^{th}$ entry is a_{ij} . The space $\Lambda^k H$ is not a Hilbert space, so we hereafter replace $\Lambda^k H$ with its complition under this inner product, which is a Hilbert space. When we need to refer to the original, algebraic space, we will use the notation $\widetilde{\Lambda^k}H$.

The inner product (1.1) is not obviously well-defined, as k-blades don't have unique representations in $\Lambda^k H$ (in fact a k-blade may be written as the sum of other k-blades!). We need to prove that it is well-defined.

Lemma 1.1. The inner product [\(1.1\)](#page-0-1) is well-defined on $\widetilde{\Lambda^k}H$, and hence defines an actual inner product.

Proof. Fix $w_1, \ldots, w_k \in H$, and consider the map $\Phi : H^k \to \mathbf{C}$ defined by

$$
\Phi(v_1,\ldots,v_k)=\det(\langle v_i,w_j\rangle).
$$

Then Φ is is multilinear and alternating, and so by definition descends to a well-defined map from $\widetilde{\Lambda^k}H \to \mathbf{C}$. This shows that $\langle v_1 \wedge \cdots \wedge v_k, w_1 \wedge \cdots \wedge w_k \rangle$ is well-defined in the first argument. Since it is clearly conjugate symmetric, it is well-defned in the second argument, and so is well-defined overall.

Lemma 1.2 (Properties of $\Lambda^k H$.). The following hold:

¹The separability assumption is mostly for notational convenience and to avoid having to talk about strongly convergent nets of projections rather than more pedestrian convergent sequences.

(i) Suppose that for $1 \leq i \leq k$, v_i^n is a sequence of vectors in H converging to $v_i \in H$. Then

$$
v_1^n \wedge \cdots \wedge v_k^n \to v_1 \wedge \cdots \wedge v_k;
$$

- (ii) The span of the k-blades $\{v_1 \wedge \cdots \wedge v_k\}$ is dense in $\Lambda^k H$;
- (iii) If e_1, e_2, \ldots is an orthonormal basis of H, then $\Lambda^k H$ has an orthonormal basis of the form $\beta = \{e_{i_1} \wedge \cdots \wedge e_{i_k} : i_1 < \cdots < i_k\}.$

Proof. Let us prove (i). We compute

$$
||v_1^n \wedge \cdots \wedge v_k^n - v_1 \wedge \cdots \wedge v_k||^2 = \det(\langle v_i^n, v_j^n \rangle) + \det(\langle v_i, v_j \rangle) - \det(\langle v_i^n, v_j \rangle) - \det(\langle v_i, v_j^n \rangle).
$$

Since the determinant of a matrix is continuous in its entries, as $n \to \infty$ this converges to

$$
\det(\langle v_i, v_j \rangle) + \det(\langle v_i, v_j \rangle) - \det(\langle v_i, v_j \rangle) - \det(\langle v_i, v_j \rangle) = 0.
$$

(ii) is true since by definition $\widetilde{\Lambda^k}H$ is the span of k-blades, and this space is dense in its completion, $\Lambda^k H$.

Now let us prove (iii). It is clear that β is an orthonormal set. We show that it is a basis. Suppose $v_1, \ldots, v_k \in H$ and for all i

$$
v_i = \lim_{n \to \infty} w_i^n
$$

for $w_i^n \in \text{span}\{e_1, e_2, \ldots\}$ is in the vector space span (i.e. is a finite linear combination). From (i), we know that

$$
w_1^n \wedge \cdots \wedge w_k^n \to v_1 \wedge \cdots v_k.
$$

Each k-blade $w_1^n \wedge \cdots \wedge w_k^n$ belongs to span β , so this shows that span β is dense in $\Lambda^k H$, which is sufficient. \Box

We now show that a bounded linear map A can be used to define an operator $\Lambda^k A$ on $\Lambda^k H$, and that this assignment is functorial.

Theorem 1.3. Let $A : H \to H$ be bounded. Then for each k there exists a unique bounded operator $\Lambda^k A : \Lambda^k H \to \Lambda^k H$ such that $\Lambda^k A$ acts on k-blades by

$$
(\Lambda^k A)(v_1 \wedge \cdots v_k) = Av_1 \wedge \cdots \wedge Av_k.
$$

Furthermore, $\|\Lambda^k A\| \leq \|A\|^k$, and the map $\Lambda^k : B(H) \to B(\Lambda^k H)$ is continuous. Explicitly, for $A, B \in B(H)$ (and $k > 1$)

(1.2)
$$
\|\Lambda^k A - \Lambda^k B\| \le k \|A - B\| \max(\|A\|, \|B\|)^{k-1}.
$$

The map Λ^k is functorial in the following sense:

- (i) $\Lambda^k(AB) = \Lambda^k A \Lambda^k B$ for A, B bounded;
- (ii) if A is invertible, then $\Lambda^k A$ is invertible with inverse $\Lambda^k A^{-1}$;
- (iii) $(\Lambda^k A)^* = \Lambda^k A^*;$
- (iv) if $\Pi : H \to K$ is the orthogonal projection onto K, then $\Lambda^k \Pi$ is the orthogonal projection onto $\Lambda^k K$, the closure of the span of k-blades $\{v_1 \wedge \cdots \wedge v_k : v_i \in K, 1 \leq$ $i \leq k$;
- (v) if A is positive, then $\Lambda^k A$ is positive;
- (vi) $|\Lambda^k A| = \Lambda^k |A|.$

If A is additionally trace class, then $\Lambda^k A$ is also trace class, and

$$
\|\Lambda^k A\|_1 \le \frac{\|A\|_1^k}{k!}.
$$

Futhermore, the map $\Lambda^k : \ell^1(H) \to \ell^1(\Lambda^k H)$ is continuous, with explicit bounds for A, B trace class (for $k > 1$)

(1.3)
$$
\|\Lambda^k A - \Lambda^k B\|_1 \le \|A - B\|_1 \frac{\max(\|A\|_1, \|B\|_1)^{k-1}}{(k-1)!}.
$$

To prove this, we need the following technical lemma:

Lemma 1.4. Let H be a Hilbert space and suppose $X \subseteq H$ is dense. Let A_n be a sequence of uniformly bounded operators such that A_nx converges pointwise for each $x \in X$. Then A_n converges strongly to a bounded operator A, and $||A|| \leq \limsup ||A_n||$.

Proof. We show that for all $v \in H$, $A_n v$ is Cauchy, and thus A_n converges strongly to a linear map A. Fix $\varepsilon > 0$. By density and uniform boundedness, there exists $x \in X$ such that for all $n \in \mathbb{N}$, $||A_n v - A_n x|| < \varepsilon/3$. Now for N large, if $n, m > N$, we may assume that $||A_n x - A_m x|| < \varepsilon/3$. Thus if $n, m > N$

$$
||A_n v - A_m v|| \le ||A_n v - A_n x|| + ||A_n x - A_m x|| + ||A_m v - A_m x|| < \varepsilon.
$$

For $v \in H$, and $\varepsilon > 0$, again choose x with $||A_n x - A_n v|| \leq \varepsilon$. Then

$$
||Av|| = \lim_{n \to \inf y} ||A_n v|| \le \limsup_{n \to \infty} ||A_n v - A_n x|| + ||A_n x|| \le \varepsilon + \limsup_{n \to \infty} ||A|| ||x||.
$$

Since $||x|| \leq \varepsilon + ||v||$, it follows that

$$
||Av|| \le (1 + \limsup_{n \to \infty} ||A||)(\varepsilon) + \limsup_{n \to \infty} ||A|| ||v||.
$$

Taking $\varepsilon \to 0$ shows that $||Av|| \leq \limsup_{n\to\infty}||A|| ||v||$, which shows that A is bounded and $||A|| \leq \limsup ||A_n||.$

Proof of theorem [1.3.](#page-1-0) This theorem has many different parts, so we prove them separately. **Part 1: uniqueness and functoriality.** Since the span of k-blades is dense, uniqueness follows immediately. By density and linearity, functoriality will follow if we can check each statement on a basis. For (i), observe that for any k-blade $v_1 \wedge \cdots \wedge v_k$,

$$
\Lambda^k(AB)(v_1 \wedge \cdots \wedge v_k) = (ABv_1) \wedge \cdots \wedge (ABv_k)
$$

= $\Lambda^k A((Bv_1) \wedge \cdots \wedge (Bv_k))$
= $\Lambda^k A \Lambda^k B(v_1 \wedge \cdots \wedge v_k).$

Property (ii) follows from (i), since

$$
\Lambda^k A^{-1} \Lambda^k A = \Lambda^k 1 = \Lambda^k A \Lambda^k A^{-1},
$$

and Λ^k 1 is certainly the identity since it maps any k-blade to itself. For (iii), observe that for any other k-blade $w_1 \wedge \cdots \wedge w_k$,

$$
\langle \Lambda^k A(v_1 \wedge \cdots \wedge v_k), w_1 \wedge \cdots \wedge w_k \rangle = \det(\langle Av_i, w_j \rangle) = \det(\langle v_i, Aw_j \rangle)
$$

= $\langle v_1 \wedge \cdots \wedge v_k, \Lambda^k A w_1 \wedge \cdots \wedge w_k.$

For (iv), observe that $\Lambda^k \Pi$ is self-adjoint (from (iii)) and idempotent (from (i)). Thus $\Lambda^k \Pi$ is the orthogonal projection onto its range. Certainly $\Lambda^k K \subseteq \text{range}(\Lambda^k \Pi)$, since $\Lambda^k \Pi$ acts as the identity on the wedge product of vectors in K . We now show that its range is contained in $\Lambda^k K$. If $v = v_1 \wedge \cdots \wedge v_k$ is a k-blade, then we may write $v_i = u_i + w_i$ where $u_i \in K$ and $w_i \perp K$. Thus

$$
v = u_1 \wedge \cdots \wedge u_k + w,
$$

where w is a sum of wedges at least one of whose factors is orthogonal to K . Thus

$$
\Lambda^k \Pi v = u_1 \wedge \cdots \wedge u_k + 0 \in \Lambda^k K.
$$

It follows that the range of $\Lambda^k \Pi$ on the span of k-blades is contained in $\Lambda^k K$, and hence the range of $\Lambda^k \Pi$ on all of $\Lambda^k H$ is contained in $\Lambda^k H$, since the span of k-blades is dense and $\Lambda^k K$ is closed by definition.

For (v), first assume that A is compact. Suppose e_1, e_2, \ldots is an orthonormal basis for H of eigenvectors of |A|. Then $\{e_{i_1} \wedge \cdots \wedge e_{i_k} : i_1 < \cdots < i_k\}$ is an orthonormal basis of eigenvectors of $\Lambda^k A$. Since each associated eigenvalue is positive, it follows that $\Lambda^k A$ is positive. If A is not compact, then fix any orthonormal basis e_1, e_2, \ldots of H, and let Π_n be the orthogonal projection onto span $\{e_1,\ldots,e_n\}$. Then $\Pi_n A \Pi_n$ is positive, and so $\Lambda^k \Pi_n \Lambda^k A \Lambda^k \Pi_n$ is positive. The operator $\Lambda_k \Pi_n$ is by (iv) the orthogonal projection onto $\text{span}\{e_{i_1} \wedge e_{i_k} : i_1 < \cdots i_k \leq n\},\$ and thus converges strongly to 1. Thus $\Lambda^k \Pi_n \Lambda^k A \Lambda^k \Pi_n$ converges strongly to $\Lambda^k A$. Since a strong limit of positive operators is positive, $\Lambda^k A$ is also positive.

For (vi), observe first that

$$
(\Lambda^k |A|)^2 = \Lambda^k |A|^2 = \Lambda^k A^* A = (\Lambda^k A)^* \Lambda^k A,
$$

and $\Lambda^k|A|$ is positive. Thus $\Lambda^k|A|$ is a positive square root of $(\Lambda^k A)^*\Lambda^k A = |\Lambda^k A|^2$, and thus must coincide with $|\Lambda^k A|^2$ $|\Lambda^k A|^2$

Part 2: Existence. Now let us show existence. We first suppose that A is positive and compact. Let e_1, e_2, \ldots be an orthonormal basis of eigenvctors of A, and suppose $Ae_i = \lambda_i e_i$. Suppose λ_1 is the largest eigenvalue. Let $\beta = \{e_{i_1} \wedge \cdots \wedge e_{i_k} : i_1 < \cdots < i_k\}$. We first define a map $B: \text{span}\,\beta \to \Lambda^k H$, and then show it is bounded, and thus B extends to a bounded map $B: \Lambda^k H \to \Lambda^k H$. We then show that

$$
B(v_1 \wedge \cdots \wedge v_k) = Av_1 \wedge \cdots \wedge Av_k,
$$

and thus we can define $\Lambda^k A = B$. For $\alpha = (\alpha_1, \ldots, \alpha_k)$ an increasing k-tuple, set $e_\alpha =$ $e_{\alpha_1} \wedge \cdots \wedge e_{\alpha_k}$, and $\lambda_{\alpha} = \lambda_{\alpha_1} \cdots \lambda_{\alpha_k}$. Define $B(e_{\alpha}) = \lambda_{\alpha} e_{\alpha}$, and then extend by linearity. Thus, if $v = \sum a_{\alpha} e_{\alpha}$ is a finite linear combination,

$$
||Bv||^2 = \sum |a_{\alpha}|^2 ||Be_{\alpha}||^2 = \sum |a_{\alpha}|^2 \lambda_{\alpha}^2 \le \lambda_1^{2k} ||v||^2,
$$

and so B extends to a bounded operator. In fact, this shows that $||B|| \leq \lambda_1^k = ||A||^k$.

If $v_1, \ldots, v_k \in H$ are finite linear combinations of the e_i , then it is easy to check that

$$
B(v_1 \wedge \cdots \wedge v_k) = Av_1 \wedge \cdots \cdots \wedge Av_k.
$$

 \overline{P} Indeed, if P and Q are positive operators on a Hilbert space, and $Q^2 = P$, then $Q = \sqrt{P}$ $Q^2 = P$, then $Q = \sqrt{P}$. To show this, suppose $a > 0$ is large enough so that $\sigma(P) \subseteq [0, a]$ and $\sigma(Q) \subseteq [0, \sqrt{a}]$. Suppose $p_n(x)$ are polynomials suppose $a > 0$ is targe enough so that $\sigma(T) \subseteq [0, a]$ and $\sigma(Q) \subseteq [0, \sqrt{a}]$. Suppose $p_n(x)$ are potynomials converging to \sqrt{x} uniformly on $[0, a]$. Then $p_n(Q^2) = p_n(P) \to \sqrt{P}$. On the other hand, $p_n(x^2) \to x$ on $[0, \sqrt{a}]$, and so $p_n(Q^2) \to Q$.

Indeed, suppose $v_i = \sum a_i^j$ $i_e^j e_j$ for all *i*. Let N be the large index such that a_i^N is nonzero for some *i*. Let T_k denote the set of injective maps from $\{1, \ldots, k\} \rightarrow \{1, \ldots, N\}$. Then

$$
B(v_1 \wedge \cdots \wedge v_k) = B\left(\sum_{\sigma \in T_k} \prod_{i=1}^k a_i^{\sigma(i)} \bigwedge_{i=1}^k e_{\sigma(i)}\right)
$$

=
$$
\sum_{\sigma \in T_k} \prod_{i=1}^k a_i^{\sigma(i)} \bigwedge_{i=1}^k \lambda_i e_{\sigma(i)}
$$

=
$$
\sum_{\sigma \in T_k} \prod_{i=1}^k a_i^{\sigma(i)} \bigwedge_{i=1}^k Ae_{\alpha(\sigma)_i}
$$

=
$$
Av_1 \wedge \cdots \wedge Av_k.
$$

Now if v_1, \ldots, v_k are not finite linear combinations, then we can write them as a limit of finite linear combinations, and use the fact that B and A are bounded, together with lemma [1.2.](#page-0-2)

Now assume that A is positive, but not compact. If e_1, e_2, \ldots is any orthonormal basis of H, let Π_n denote the orthogonal projection onto $\text{span}\{e_1,\ldots,e_n\}$. Then $\Pi_n A \Pi_n$ is positive and compact, and so $\Lambda^k(\Pi_n A \Pi_n)$ exists. Using lemma [1.2](#page-0-2) and the definition of $\Lambda^k(\Pi_n A \Pi_n)$ on k-blades, it follows that for any k-blade $v_1 \wedge \cdots \wedge v_k$

$$
\Lambda^k(\Pi_n A \Pi_n) v_1 \wedge \cdots \wedge v_k = (\Pi_n A \Pi_n v_1) \wedge \cdots \wedge (\Pi_n A \Pi_n A v_k) \rightarrow A v_1 \wedge \cdots \wedge A v_k.
$$

Thus by linearity $\Lambda^k(\Pi_n A \Pi_n)$ converges pointwise on the span of k-blades. Also,

$$
\|\Lambda^k \Pi_n A \Pi_n\| \le \|\Pi_n A \Pi_n\|^k \le \|A\|^k
$$

for each n. Thus, since the span of k-blades is dense, by lemma [1.4,](#page-2-0) $\Lambda^k(\Pi_n A \Pi_n)$ converges strongly to some operator B . Since we have already shown that

$$
B(v_1 \wedge \cdots \wedge v_k) = \lim_{n \to \infty} \Lambda^k (\Pi_n A \Pi_n)(v_1 \wedge \cdots \wedge v_k) = Av_1 \wedge \cdots \wedge Av_k
$$

for any k-blade, we may set $\Lambda^k A = B$.

Now let A be a partial isometry. Let e_1, e_2, \ldots be an orthonormal basis of H which is the result of taking the union of an orthonormal basis of ker A and ker A^{\perp} (and then relabelling), and let β be as above. As above, we first define a map $B: \text{span }\beta \to \Lambda^k H$, show it is bounded, and that it behaves correctly on k-blades. Define

$$
B(e_{\alpha}) = Ae_{\alpha_1} \wedge \cdots \wedge Ae_{\alpha_n}.
$$

If α and α' are increasing k-tuples, then

$$
\langle Be_{\alpha}, Be_{\alpha'} \rangle = \det(\langle A^* A e_{\alpha_i}, e_{\alpha'_j} \rangle).
$$

Now A^*A is precisely the projection onto ker A^{\perp} . Thus, if any $e_{\alpha_i} \in \text{ker } A$, $\langle Be_{\alpha}, Be'_{\alpha} \rangle = 0$. Otherwise (i.e. all e_{α_i} are in ker A^{\perp}), it is equal to

$$
\det(\langle e_{\alpha_i}, e_{\alpha'_j} \rangle) = \langle e_{\alpha}, e_{\alpha'} \rangle.
$$

Now, if $v = \sum a_{\alpha} e_{\alpha}$ is a finite linear combination, let S be the collection of those α such all $e_{\alpha_i} \in \ker A^{\perp}$. Then

$$
||Bv||^2 = \sum_{\alpha,\alpha'} a_{\alpha} \overline{a_{\alpha'}} \langle Be_{\alpha}, Be_{\alpha'}' \rangle
$$
⁵

$$
= \sum_{\alpha \in S, \alpha'} a_{\alpha} \overline{a_{\alpha'}} \langle e_{\alpha}, e_{\alpha'} \rangle
$$

$$
= \sum_{\alpha \in S} |a_{\alpha}|^2 \le ||v||^2.
$$

It follows that B is bounded and has norm precisely 1 (which is of course also $||A||^k$). The proof that B behaves correctly on k -blades is the same as in the case that A is compact and positive. Thus in this case, too, can we set $\Lambda^k A = B$.

Now for the general case. Suppose A is bounded. Write $A = U|A|$ the polar decomposition, where U is a partial isometry and $|A|$ is positive. Define

$$
\Lambda^k A = \Lambda^k U \Lambda^k |A|,
$$

both factors of which exist. We need to show that $\Lambda^k A$ behaves properly on k-blades. But this is obvious, as for any k-blade $v_1 \wedge \cdots \wedge v_k$,

$$
\Lambda^k U \Lambda^k |A| v_1 \wedge \cdots \wedge v_k = \Lambda^k U(|A| v_1 \wedge \cdots \wedge |A| v_k) = (U|A| v_1) \wedge \cdots \wedge (U|A| v_k).
$$

Certainly

$$
\|\Lambda^k A\| \le \|\Lambda^k U\| \|\Lambda^k |A|\| \le \| |A|\|^k = \|A\|^k
$$

.

Part 4: Continuity. Suppose A, B are bounded operators. Let e_1, e_2, \ldots be an orthonormal basis of H, and let Π_n denote the projection on $\{e_1, \ldots, e_n\}$. Since $\Lambda^k \Pi_n$ is the projection onto span $\{e_{i_1} \wedge e_{i_k} : i_1 < \cdots i_k \leq n\}$, $\Lambda^k \Pi_n (\Lambda^k A - \Lambda^k B) \Lambda^k \Pi_n$ converges in the strong operator topology $\Lambda^k A - \Lambda^k B$. Since the operator norm is lower semicontinuous in the strong operator topology, it suffices to prove [\(1.2\)](#page-1-1) with A and B replaced by $\Pi_n A \Pi_n$ and $\Pi_nB\Pi_n$, respectively. In other words, we may assume that H is finite-dimensional with $\dim H = n$ (and hence $k \leq n$ since the spaces $\Lambda^k H = 0$ for $k > n$). For $t \in [0,1]$, let $C(t) = tA + (1-t)B$. For α an increasing k-tuple and $v \in \Lambda^k H$, define

$$
\gamma_{\alpha,v}(t) = \langle \Lambda^k C(t) e_\alpha, v \rangle,
$$

which is smooth on [0, 1] (since v may be expanded in a finite basis of $\Lambda^k H$). In particular,

(1.4)
$$
\langle (\Lambda^k A - \Lambda^k B)e_\alpha, v \rangle = \gamma_{\alpha,v}(1) - \gamma_{\alpha,v}(0) = \int_0^1 \gamma'_{\alpha,v}(t) dt.
$$

We now compute $\gamma'_{\alpha,v}$. For $1 \leq i \leq k$, denote by $\widehat{e_{\alpha_i}}$ the wedge of all e_{α_i} (in order) except e_{α_i} .
Write $A = R = V|A = R|$. Since H is finite dimensional, we may assume that V is unitary. Write $A - B = V |A - B|$. Since H is finite-dimensional, we may assume that V is unitary. We may also assume (by the spectral theorem) that the basis $\{e_1, \ldots, e_n\}$ of H is a basis of eigenvectors for $|A - B|$, with eigenvalues $\lambda_i \geq 0$. Write $Ve_i = f_i$, so that $\{f_1, \ldots, f_n\}$ is an orthonormal basis. Use the notation $f_{\alpha} = f_{\alpha_1} \wedge \cdots \wedge f_{\alpha_\ell}$ for an increasing ℓ -tuple α . Using that the wedge product is continuous, it is easy to check that

$$
\gamma'_{\alpha,v}(t) = \sum_{i=1}^k \langle e_{\alpha_1} \wedge \cdots \wedge e_{\alpha_{i-1}} \wedge C'(t) e_{\alpha_i} \wedge e_{\alpha_{i+1}} \wedge \cdots \wedge e_{\alpha_k}, v \rangle
$$

$$
= \sum_{i=1}^k (-1)^{i+1} \langle (A-B) e_{\alpha_i} \wedge \Lambda^{k-1} C(t) \widehat{e_{\alpha_i}}, v \rangle
$$

$$
= \sum_{i=1}^{k} (-1)^{i+1} \lambda_{\alpha_i} \langle f_{\alpha_i} \wedge \Lambda^{k-1} C(t) \widehat{e_{\alpha_i}}, v \rangle.
$$

For all j, the wedge map $f_j \wedge : \Lambda^{k-1}H \to \Lambda^kH$ has norm 1. Let ι_{f_j} denote its adjoint which also has norm 1. Then we can rewrite the previous display as

(1.5)
$$
\gamma'_{\alpha,v}(t) = \sum_{i=1}^k (-1)^{i+1} \lambda_{\alpha_i} \langle \Lambda^{k-1} C(t) \widehat{e_{\alpha_i}}, \iota_{f_{\alpha_i}} v \rangle.
$$

For $v \in \Lambda^k H$, let v_α be the coefficients in the expansion $v = \sum_\alpha v_\alpha e_\alpha$. Then, from [\(1.4\)](#page-5-0),

(1.6)

$$
\|\Lambda^k A - \Lambda^k B\| = \sup_{\|v\| = \|w\|=1} \left| \sum_{\alpha} v_{\alpha} \langle (\Lambda^k A - \Lambda^k B) e_{\alpha}, w \rangle \right|
$$

$$
\leq \sup_{\|v\| = \|w\|=1} \int_0^1 \left| \sum_{\alpha} v_{\alpha} \gamma'_{\alpha,w}(t) dt \right| dt.
$$

Fix some v, w with $||v|| = ||w|| = 1$. Plugging in [\(1.5\)](#page-6-0) for $\gamma'_{\alpha,w}(t)$ and applying Cauchy-Schwarz inequality yields (1.7)

$$
\left|\sum v_{\alpha}\gamma'_{\alpha,w}(t)\ dt\right| = \left|\sum_{\alpha} v_{\alpha}\gamma'_{\alpha,v}(t)\right| \leq \left(\sum_{\alpha,i} |v_{\alpha}|^2 |\lambda_{\alpha_i}|^2\right)^{1/2} \left(\sum_{\alpha,i} |\Lambda^{k-1}C(t)\widehat{e_{\alpha_i}}, \iota_{f_{\alpha_i}}w\rangle|^2\right)^{1/2}.
$$

The first factor is bounded by

$$
\sqrt{k}(\sup \lambda_i) ||v|| = \sqrt{k} ||A - B||.
$$

For the second, we may rewrite the sum instead over all pairs (j, β) , where $1 \leq j \leq n$, and β is an increasing $(k-1)$ -tuple none of whose terms is j. This yields

$$
\sum_{\alpha,i} |\langle \Lambda^{k-1} C(t) \widehat{e_{\alpha_i}}, \iota_{f_{\alpha_i}} v \rangle|^2 = \sum_{\beta,j} |\langle e_{\beta}, \Lambda^{k-1} C(t)^* \iota_{f_j} w \rangle|^2.
$$

Taking the sum first over β , one bounds this by

$$
\sum_{j} \|\Lambda^{k-1}C(t)^* \iota_{f_j} w\|^2 \le \|\Lambda^{k-1}C(t)^*\|^2 \sum_{j} \|\iota_{f_j} w\|^2.
$$

The first factor is bounded by $||C(t)^*||^{2(k-1)} = ||C(t)||^{2(k-1)}$. For the second factor, expand $w = \sum w_{\alpha} f_{\alpha}$. Notice that $\iota_{f_j} f_{\alpha} = 0$ if j is not a term in α . Otherwise, $\iota_{f_j} f_{\alpha} = \pm f_{\alpha'}$, where α' is the increasing $(k-1)$ -tuple obtained from α by removing j (the sign depends on j and α). Thus, $\langle \iota_{f_j} f_{\alpha}, \iota_{f_j} f_{\beta} \rangle = \delta_{\alpha = \beta}$, the Kronecker δ , and

$$
||\iota_{f_j} w||^2 = \sum_{\alpha,\beta} w_{\alpha} \overline{w_{\beta}} \langle \iota_{f_j} e_{\alpha}, \iota_{f_j} e_{\beta} \rangle = \sum_{\alpha \ni j} |w_{\alpha}|^2,
$$

where the sum ranges over all those α one of whose terms is j. Thus

$$
\sum_{j} \|\iota_{f_j} w\|^2 = \sum_{j} \sum_{\alpha \ni j} |w_{\alpha}|^2.
$$

In this sum, each term $|w_{\alpha}|^2$, for an increasing k-tuple α , appears precisely k times: once for each $j = \alpha_i, 1 \leq i \leq k$. We conclude that

$$
\sum_{j} ||u_{f_j} w||^2 = k \sum_{\alpha} |w_{\alpha}|^2 = k ||w||^2 = k.
$$

Putting it all together, the second factor on the last line of [\(1.7\)](#page-6-1) is bounded by $||C(t)||^{j-1}\sqrt{\frac{2}{n}}$ $k,$ and recalling the bound on the first factor, [\(1.7\)](#page-6-1) is bounded by

$$
k||A - B|| ||C(t)||^k
$$
.

Now

$$
||C(t)|| \le (1-t)||A||+t||B|| \le \max(||A||, ||B||).
$$

Hence, from (1.6) ,

$$
\|\Lambda^k A - \Lambda^k B\| \le \int_0^1 k \|A - B\| \max(\|A\|, \|B\|)^k dt \le k \|A - B\| \max(\|A\|, \|B\|)^{k-1},
$$

which is the desired bound.

Part 5: Trace class operators. Now let us suppose A is trace class. We prove that $\Lambda^k A$ is trace class, i.e. $|\Lambda^k A|$ is trace class. We know that $|\Lambda^k A| = \Lambda^k |A|$, so replacing A with $|A|$, we can assume that A is positive. Since $|A|$ is compact, by the spectral theorem we can find e_1, e_2, \ldots , an orthonormal basis of eigenvectors of A, and suppose $Ae_i = \lambda_i e_i$. Let $\beta = \{e_{i_1} \wedge \cdots \wedge e_{i_k} : i_1 < \cdots < i_k\}$. Then

$$
\operatorname{Tr}(\Lambda^k A) = \sum_{i_1 < \dots < i_k} \lambda_{i_1} \dots \lambda_{i_k}
$$
\n
$$
= \lim_{n \to \infty} \sum_{i_1 < \dots < i_k \le n} \lambda_{i_1} \dots \lambda_{i_k}
$$
\n
$$
= \lim_{n \to \infty} \sum_{i_1 < \dots < i_k \le n} \frac{1}{k!} \sum_{\sigma \in S_k} \lambda_{i_{\sigma}(1)} \dots \lambda_{i_{\sigma}(k)}
$$
\n
$$
= \lim_{n \to \infty} \frac{1}{k!} \sum_{(i_1, \dots, i_k), i_k \le n, \text{ has distinct entries}}
$$
\n
$$
\le \lim_{n \to \infty} \frac{1}{k!} \sum_{(i_1, \dots, i_k), i_k \le n, \text{ a } k \text{-tuple}}
$$
\n
$$
= \lim_{n \to \infty} \frac{1}{k!} \left(\sum_{i=1^n} \lambda_i \right)^k
$$
\n
$$
= \frac{\operatorname{Tr}(A)^k}{k!}.
$$

Thus *A* is trace class and $||A||_1 \leq \frac{||A||_1^k}{k!}$.

Part 6: Continuity in the trace norm. The proof starts very similarly to part 4, the proof of the continuity in the operator norm, and we use the same notation. Suppose A, B are trace-class operators. Let e_1, e_2, \ldots be an orthonormal basis of H, and let Π_n denote the projection on $\{e_1, \ldots, e_n\}$. Recall that $\Lambda^k \Pi_n$ is the projection onto span $\{e_{i_1} \wedge$ $e_{i_k}: i_1 < \cdots i_k \leq n$. We will show below in lemma [1.5](#page-9-0) that this means that, $\Pi_n A \Pi_n \to A$,

 $\Pi_n B \Pi_n \to B$, $\Lambda^k \Pi_n A \Pi_n \to \Lambda^k A$, $\Lambda^k \Pi_n B \Pi_n \to \Lambda^k B$, all in the trace norm. Thus, it suffices to prove [\(1.3\)](#page-2-1) with A and B replaced by $\Pi_n A \Pi_n$ and $\Pi_n B \Pi_n$, respectively. In other words, we may assume that H is finite-dimensional with dim $H = n$.

Let $C(t)$, $\gamma_{\alpha,v}(t)$, f_{α} , λ_i be as in part 4. Write $\Lambda^k A - \Lambda^k B = U|\Lambda^k A - \Lambda^k B|$ for the polar decomposition, so that $|\Lambda^k A - \Lambda^k B| = U^* (\Lambda^k A - \Lambda^k B)$. Then, from [\(1.4\)](#page-5-0),

(1.8)
\n
$$
\|\Lambda^k A - \Lambda^k B\|_1 = |\operatorname{Tr}(U^*(\Lambda^k A - \Lambda^k B))|
$$
\n
$$
= \left| \sum_{\alpha} \langle \Lambda^k A - \Lambda^k B \rangle e_{\alpha}, U e_{\alpha} \rangle \right|
$$
\n
$$
\leq \int_0^1 \left| \sum_{\alpha} \gamma'_{\alpha, U e_{\alpha}}(t) \right| dt.
$$

We will bound the integrand uniformly. Plugging in [\(1.5\)](#page-6-0) for the integrand yields

(1.9)
$$
\sum_{\alpha} \gamma'_{\alpha, U e_{\alpha}}(t) = \sum_{\alpha, i} (-1)^{i+1} \lambda_{\alpha_i} \langle \Lambda^{k-1} C(t) \widehat{e_{\alpha_i}}, \iota_{f_{\alpha_i}} U e_{\alpha} \rangle.
$$

We may rewrite the sum instead over all pairs (j, β) , where $1 \leq j \leq n$, and β is an increasing $(k-1)$ -tuple none of whose terms is j. To do so, notice that $e_{\alpha} = (-1)^{i+1} e_{\alpha_i} \wedge \widehat{e_{\alpha_i}}$. Thus, the sum is equal to the sum is equal to

(1.10)
$$
\sum_{\alpha} \gamma'_{\alpha, U e_{\alpha}}(t) = \sum_{j, \beta} \lambda_j \langle \Lambda^{k-1} C(t) e_{\beta}, \iota_{f_j} U(e_j \wedge e_{\beta}) \rangle.
$$

For j fixed, let $U_j: \Lambda^{k-1}H \to \Lambda^{k-1}H$ be the map $w \mapsto \iota_{f_j}U(e_j \wedge w)$, which has norm at most 1. Let $\Gamma_j: H \to H$ be the projection off of e_j . Then $\Lambda^{k-1} \Gamma_j e_\beta = e_\beta$ precisely when j is not an index in β , and is 0 otherwise. Then, for j fixed, the the sum over β is just

$$
\text{Tr}((\Lambda^{k-1}\Gamma_j U_j^*\Lambda^{k-1}C(t)\Lambda^{k-1}\Gamma_j),
$$

which is bounded by

$$
\|\Lambda^{k-1}\Gamma_j\|^2\|\Lambda^{k-1}U_j^*\|\|\Lambda^{k-1}C\|_1\leq \frac{\|C\|_1^{k-1}}{(k-1)!},
$$

using the bounds we have proven previously. Thus, (1.10) is bounded by

$$
(1.11) \qquad \left| \sum_{\alpha} \gamma'_{\alpha, U e_{\alpha}}(t) \right| = \left| \sum_{j} \lambda_{j} \operatorname{Tr}((\Lambda^{k-1} \Gamma_{j} U_{j}^{*} \Lambda^{k-1} C(t) \Lambda^{k-1} \Gamma_{j}) \right| \leq \left(\sum_{j} \lambda_{j} \right) \frac{\| C(t) \|_{1}^{k-1}}{(k-1)!}
$$

$$
= \| A - B \|_{1} \frac{\| C(t) \|_{1}^{k-1}}{(k-1)!}
$$

However,

$$
||C(t)||_1 \le (1-t)||A||_1 + t||B||_1 \le \max(||A||_1, ||B||_1).
$$

Therefore, returning to [\(1.8\)](#page-8-1) and using [\(1.11\)](#page-8-2)

$$
\|\Lambda^k A - \Lambda^k B\| \le \int_0^1 \left| \sum_{\alpha} \gamma'_{\alpha, U e_{\alpha}}(t) dt \right| dt
$$

$$
\leq \int_0^1 \|A - B\|_1 \frac{\max(\|A\|_1, \|B\|_1)^{k-1}}{(k-1)!} dt
$$

$$
\leq \|A - B\|_1 \frac{\max(\|A\|_1, \|B\|_1)^{k-1}}{(k-1)!},
$$

which is the desired bound. \Box

We now prove the lemma about convergence in the trace class, which we will also use later.

Lemma 1.5. Let H be a Hilbert space, and let $E_1 \subseteq E_2 \subseteq \cdots$ be a family of strictly increasing finite-dimensional subspaces of H whose closure is dense. Let Π_i be the projection on E_i . Then $A(1 - \Pi_n) \to 0$ and $(1 - \Pi_n)A \to 0$ in the trace class norm. In particular, $\Pi_n A \Pi_n \to A$ in the trace-class norm.

Proof. The second claim follows from the first by bounding

 $\|\Pi_n A \Pi_n - A\|_1 \leq \|(\Pi_n - 1)A\| \|\Pi_n\| + \|A(\Pi_n - 1)\|_1.$

The statement for $(1 - \Pi_n)A$ follows from that for $A(1 - \Pi_n)$ by taking adjoints.

Write $A = U|A|$ and $A(1 - \Pi_n) = V|A(1 - \Pi_n)|$ for the polar decompositions. Then

$$
|A(1 - \Pi_n)| = V^*U|A|(1 - \Pi_n) = (V^*U|A|^{1/2})(|A|^{1/2}(1 - \Pi_n)).
$$

Set $W = V^*U$. We may pick an orthonormal basis $\{e_1, \ldots, e_{m_1}\}$ of E_1 , extend it to an orthonormal basis $\{e_1, \ldots, e_{m_2}\}$ of E_2 , etc, obtaining an orthonormal basis e_1, e_2, \ldots of H , such that for $m_i = \dim E_i$, $\{e_1, \ldots, e_{m_i}\}$ is an orthonormal basis for E_i . Then

$$
||A(1 - \Pi_n)||_1 = |\operatorname{Tr}(|A(1 - \Pi_n)|)| = \left| \sum_{i=1}^{\infty} \langle |A|^{1/2} (1 - \Pi_n) e_i, |A|^{1/2} W^* e_i \rangle \right|
$$

=
$$
\left| \sum_{i=m_n}^{\infty} \langle |A|^{1/2} e_i, |A|^{1/2} W^* e_i \rangle \right|
$$

$$
\leq \left(\sum_{i=m_n}^{\infty} |||A|^{1/2} e_i||^2 \right)^{1/2} \left(\sum_{i=m_n}^{\infty} |||A|^{1/2} W^* e_i||^2 \right)^{1/2}.
$$

The square of the second factor is bounded, uniformly in n , by

$$
\sum_{i=1}^{\infty} |||A|^{1/2} W^* e_i||^2 = \text{Tr}(W|A|W^*) \le ||A||_1.
$$

The square of the first factor is

$$
\sum_{i=m_n}^{\infty} \langle \langle |A|e_i, e_i \rangle,
$$

which goes to 0 as $n \to \infty$.

 $\bigg\}$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{array}{c} \end{array}$

2. The Fredholm determinant

We can now define the Fredholm determinant.

Definition 2.1. Suppose $A: H \to H$ is trace class. Then define

$$
\det_{\mathrm{Frd}}(1+A) = \sum_{k=0}^{\infty} \mathrm{Tr}(\Lambda^k A),
$$

interpreting $\text{Tr}(\Lambda^0 A) = 1$. This makes sense since by theorem [1.3](#page-1-0) $|\text{Tr}(\Lambda^k A)| \leq \frac{\|A\|_1^k}{k!}$ for all k , and hence the defining series is absolutely summable.

Let us check that this agrees with the usual definition in the case that H is finitedimensional. In fact,

Proposition 2.2. Suppose $K \subseteq H$ is finite-dimensional, and $A = \Pi A \Pi$, where Π is the orthogonal projection onto K. Then, with \det_{us} interpreted as the usual determinant of a linear map between fininite dimensional spaces,

$$
\det_{\text{us}}((1+A)|_K) = \det_{\text{Frd}}(1+A).
$$

Proof. Suppose dim $K = n$. Fix $k > n$, and a k-blade $v = v_1 \wedge \cdots \wedge v_k$. Write $v_i = u_i + w_i$, where $u_i \in K$ and $w_i \perp K$. Then $v = u + w$, where u is a wedge of $k + 1$ vectors in K, and is hence 0, and w is a sum of wedges of terms such as at least one constituent factor per term is perpendicular to K. So $\Lambda^k A v = 0 + \Lambda^k A w = 0$. So $\Lambda^k A \equiv 0$ if $k > n$. Therefore the sum $\sum_{k=0}^{\infty} \text{Tr}(\Lambda^k A)$ only goes up to $k = n$. Suppose $e_1, \ldots, e_n, e_{n+1}, \ldots$ is an orthonormal basis of H such that e_1, \ldots, e_n is an orthonormal basis of K. Reall that

$$
\Lambda^{n}(1+A)e_1\wedge\cdots\wedge e_n=\det_{\text{us}}((1+A)|_K)e_1\wedge\cdots\wedge e_n.
$$

On the other hand

$$
\Lambda^{n}(1+A)e_1 \wedge \cdots \wedge e_n = (1+A)e_1 \wedge \cdots \wedge (1+A)e_n.
$$

In the expansion wedge product, each term is a wedge of factors of the form Ae_i or e_j . Set $B^0 = 1$ and $B^1 = \tilde{A}$. Let $\sigma \subseteq \{1, \ldots, n\}$, and interpret $\sigma : \{1, \ldots, n\} \to \{0, 1\}$, where $\sigma(i) = 1$ if $i \in \sigma$. Then

$$
\Lambda^{n}(1+A)e_1 \wedge \cdots \wedge e_n = \sum_{\sigma} B^{\sigma(1)} e_1 \wedge \cdots \wedge B^{\sigma(n)} e_n.
$$

For a fixed $\sigma = \{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}$, with $\{1, \dots, n\} \setminus \sigma = \{j_{k+1}, \dots, j_n\}$, the corresponding term above is equal to

$$
(2.1) \pm Ae_{i_1}\wedge\cdots Ae_{i_k}\wedge e_{j_{k+1}}\wedge\cdots\wedge e_{j_n}=\pm(\Lambda^kA)(e_{i_1}\wedge\cdots\wedge e_{i_k})\wedge(e_{j_{k+1}}\wedge\cdots\wedge e_{j_n}),
$$

with the sign \pm depending on how many swaps are required to turn $e_{\sigma(1)} \wedge \cdots \wedge e_{\sigma(n)}$ into $e_{i_1} \wedge \cdots \wedge e_{i_k} \wedge e_{j_{k+1}} \wedge \cdots \wedge e_{j_n}$. Let us assume without loss of generality that $i_1 < \cdots < i_k$, $j_1 < \cdots < j_k$. Expanding in an orrthonormal basis, we may write

$$
(2.2) \quad (\Lambda^k A)(e_{i_1} \wedge \cdots \wedge e_{i_k}) = \sum_{\ell_1 < \cdots < \ell_k} \langle (\Lambda^k A)(e_{i_1} \wedge \cdots \wedge e_{i_k}), e_{\ell_1} \wedge \cdots \wedge e_{\ell_k} \rangle e_{\ell_1} \wedge \cdots \wedge e_{\ell_k}.
$$

Let us examine the term corresponding to $\{\ell_1 < \cdots < \ell_k\}$ in this sum. If any $\ell_p > n$, then this term is 0, since A is 0 on the orthocomplement to K. If $\ell_p = j_r$ for some p and r, then the wedge product of this term with $e_{j_{k+1}} \wedge \cdots \wedge e_{j_n}$ is 0. Thus the only term in [\(2.2\)](#page-10-0) which

survives after wedging with $e_{j_{k+1}} \wedge \cdots \wedge e_{j_n}$ is the term corresponding to $\ell_p = i_p$ for all p. Plugging [\(2.2\)](#page-10-0) into [\(2.1\)](#page-10-1) and using this fact yields

$$
\pm Ae_{i_1} \wedge \cdots Ae_{i_k} \wedge e_{j_{k+1}} \wedge \cdots \wedge e_{j_n}
$$
\n
$$
= \pm \langle (\Lambda^k A)(e_{i_1} \wedge \cdots \wedge e_{i_k}), e_{i_1} \wedge \cdots \wedge e_{i_k}\rangle e_{i_1} \wedge \cdots \wedge e_{i_k} \wedge e_{j_{k+1}} \wedge \cdots \wedge e_{j_n}
$$
\n
$$
= \langle (\Lambda^k A)(e_{i_1} \wedge \cdots \wedge e_{i_k}), e_{i_1} \wedge \cdots \wedge e_{i_k}\rangle e_1 \wedge \cdots \wedge e_n.
$$

Since

$$
\langle (\Lambda^k A)(e_{\ell_1} \wedge \cdots \wedge e_{\ell_k}), e_{\ell_1} \wedge \cdots \wedge e_{\ell_k} \rangle = 0
$$

if any $\ell_p > n$, summing

$$
\langle (\Lambda^k A)(e_{i_1} \wedge \cdots \wedge e_{i_k}), e_{i_1} \wedge \cdots \wedge e_{i_k} \rangle e_1 \wedge \cdots \wedge e_n
$$

over all subsets $\sigma = \{i_1 < \cdots < i_k\} \subseteq \{1, \ldots, n\}$ is the same as summing it over all sets $\{i_1 < \cdots < i_k\} \subseteq \mathbb{N}$, and thus the sum equals

$$
\operatorname{Tr}(\Lambda^k A)e_1\wedge\cdots\wedge e_n.
$$

Recalling the definition of B^j , we have thus shown that

$$
\sum_{\#\sigma=k} B^{\sigma(1)} e_1 \wedge \cdots \wedge B^{\sigma(n)} e_n = \text{Tr}(\Lambda^k A) e_1 \wedge \cdots \wedge e_n.
$$

The sum of this over all $k \leq n$ is thus on the one had equal to $\det_{us}((1+A)|_K)e_1 \wedge \cdots \wedge e_n$, as we have shown, and is on the other hand equal to $\left(\sum_{k=0}^n \text{Tr}(\Lambda^k A)\right) e_1 \wedge \cdots \wedge e_n = \det_{\text{Frd}}(1 +$ (A) .

We will use proposition [2.2](#page-10-2) to approximate the Fredholm determinant of an operator by finite-rank approximations. Fortunately, we have lemma [1.5](#page-9-0) which will guarantee that the finite-dimensional approximations converge in the trace-class norm. Using the continuity of $\Lambda^k: \ell_1(H) \to \ell_1(\Lambda^k H)$ will allow us to show that the Fredholm determinant is continuous, and thus the finite-dimensional approximations converge. Indeed:

Lemma 2.3. The Fredholm determinant is continuous in the trace-class norm. Explicitly, if A and B are trace class, then

$$
|\det(1+A) - \det(1+B)| \leq \|A-B\|_1 \exp(\max(\|A\|_1, \|B\|_1)).
$$

Proof. This follows easily from theorem [1.3.](#page-1-0) Indeed,

$$
|\det(1+A) - \det(1+B)| \le \sum_{k>1} |\operatorname{Tr}(\Lambda^k A - \Lambda^k B)| \le \sum_{k>1} \|A - B\|_1 \frac{\max(\|A\|_1, \|B\|_1)^{k-1}}{(k-1)!}
$$

(the $k = 0$ term vanishes since $\text{Tr}(\Lambda^0 A) = \text{Tr}(\Lambda^0 B) = 1$). The lemma follows.

Theorem 2.4 (Properties of the determinant). Suppose A, B are trace class. Then

$$
(i) \ \det(1 + A^*) = \overline{\det(1 + A)};
$$

- (ii) $\det(1+A)\det(1+B) = \det((1+A)(1+B));$
- (iii) if A is self-adjoint with eigenvalues $\lambda_1, \lambda_2, \ldots$, then $\det(1 + A) = \prod_{i=1}^{\infty} (1 + \lambda_i);$
- (iv) if X is invertible, then $\det(1 + XAX^{-1}) = \det(1 + A);$
- (v) det(1+A) = 0 if and only if $1+A$ is not invertible;
- (vi) $\exp(A) 1$ is trace class and $\det(\exp(A)) = \exp(\text{Tr}(A)).$

Proof. Let e_1, e_2 be an orthonomal basis for H and let Π_n be the orthogonal projection onto $span\{e_1,\ldots,e_n\}.$

Let us first prove (i). For each n , oberserve that

$$
((1 + \Pi_n A \Pi_n)|_{\text{range}(\Pi_n)})^* = (1 + \Pi_n A^* \Pi_n)|_{\text{range}(\Pi_n)}.
$$

It follows from proposition [2.2](#page-10-2) that

(2.3)
$$
\det(1 + \Pi_n A^* \Pi_n) = \det_{\text{us}}(((1 + \Pi_n A \Pi_n)|_{\text{range}(\Pi_n)})^*)
$$

$$
= \overline{\det_{\text{us}}((1 + \Pi_n A \Pi_n)|_{\text{range}(\Pi_n)})} = \overline{\det(1 + \Pi_n A \Pi_n)}.
$$

By lemma [1.5,](#page-9-0) $\Pi_n A \Pi_n$, and $\Pi_n A^* \Pi_n$ converge to A and A^* , respectively, in the trace class norm, and thus by lemma [2.3,](#page-11-0) $\det(1+\Pi_nA\Pi_n) \to \det(1+A)$ and similarly $\det(1+\Pi_nB\Pi_n) \to$ $det(1 + B)$. Taking limits in [\(2.3\)](#page-12-0) proves (i).

Now let us show (ii). Again from proposition [2.2,](#page-10-2) for $n \geq N$

$$
\det(1 + \Pi_n A \Pi_n) \det(1 + \Pi_n B \Pi_n) = \det(1 + \Pi_n A \Pi_n + \Pi_n B \Pi_n + \Pi_n A \Pi_n B \Pi_n).
$$

As above, the left-hand side converges to $\det(1+A)\det(1+B)$. For the right-hand side, we know that $\Pi_n A \Pi_n$ and $\Pi_n B \Pi_n B$ converge to A and B in the trace-class norm, so to establish that the right-hand side converges to $\det(1 + A + B + AB) = \det((1 + A)(1 + B))$, we just need to show that $\Pi_n A \Pi_n B \Pi_n \to AB$ in the trace-class norm. Indeed, we may bound

$$
\|\Pi_n A \Pi_n B \Pi_n - A B\|_1 \le \|(\Pi_n - 1)A\|_1 \|\Pi_n B \Pi_n\| + \|A(\Pi_n - 1)\|_1 \|B \Pi_n\| + \|A\| \|B(\Pi_n - 1)\|_1 \to 0.
$$

Now let us show (iii). Assume without loss of generality that $e_1, e_2 \cdots$ are eigenvectors of A, and that $Ae_i = \lambda_i e_i$. Then from proposition [2.2](#page-10-2)

$$
\det(1 + \Pi_n A \Pi_n) = \prod_{i=1}^n (1 + \lambda_i).
$$

Taking $n \to \infty$ as usual (and using that $\sum |\lambda_i| < \infty$) shows (iii).

Next let us show (iv). Let $K_n = \text{range}(\Pi_n)$, and let Γ_n be the orthogonal projection onto $K'_n = X(K_n)$. We know from proposition [2.2](#page-10-2) that

$$
\begin{split} \det(1 + \Pi_n A \Pi_n) &= \det_{\text{us}}((1 + \Pi_n A \Pi_n)|_{K_n}) \\ &= \det_{\text{us}}(X|_{K_n}(1 + \Pi_n A \Pi_n)|_{K_n} X^{-1}|_{K_n'}) \\ &= \det_{\text{us}} t((1 + X \Pi_n A \Pi_n X^{-1})|_{K_n'}) \\ &= \det(1 + (\Gamma_n X \Pi_n A \Pi_n X^{-1} \Gamma_n)|_{K_n'}) \qquad = \det(1 + \Gamma_n X \Pi_n A \Pi_n X^{-1} \Gamma_n). \end{split}
$$

As usual, the left-hand side converges to $\det(1+A)$, and the right-hand side converges to $\det(1+XAX^{-1})$ provided $T_n := \Gamma_n X \Pi_n A \Pi_n X^{-1} \Gamma_n$ converges in the trace-class norm to XAX^{-1} . As in the proof of lemma [1.5,](#page-9-0) we may take an orthornormal basis f_1, f_2, \ldots such that f_1, \ldots, f_n is a basis of K'_n , and thus Γ_n is the orthogonal projection onto $\{f_1, \ldots, f_n\}$. Observe that by definition $\Gamma_n X \Pi_n = X \Pi_n$. Therefore

$$
||T_n - XAX^{-1}||_1 \le ||X|| ||(\Pi_n - 1)A||_1 ||\Pi_n X^{-1} \Gamma_n||
$$

+ $||X|| ||A(\Pi_n - 1)||_1 ||X^{-1} \Gamma_n|| + ||X|| ||AX^{-1}(1 - \Gamma_n)||_1 \to 0$

(recall that AX^{-1} is trace class). This shows (iv).

Finally we show (v). Suppose $1 + A$ is not invertible. Since $1 + A$ is Fredholm of index 0, it follows that $1 + A$ has closed range, and dim ker $(1 + A) = \dim \text{range}(1 + A)^{\perp}$. In

particular, $1+A$ has a null space containing at least one unit-norm vector e_1 . Extend e_1 to an orthonormal basis e_1, e_2, \ldots of H. Let Π_n be the projection onto e_1, \ldots, e_n . By assumption, $Ae_1 = -e_1$. Thus $\Pi_n A \Pi_n e_1 = -e_1$, and so $(1 + \Pi_n A \Pi_n)e_1 = 0$. Thus $0 = \det(1 + \Pi_n A \Pi_n)$. As usual, this converges to $\det(1+A)$, which shows that it is 0.

Now suppose $\det(1+A) = 0$. Then, by (i), $\det(1+A^*) = 0$, and so by (ii), $\det((1+A^*))$ $A^*(1+A) = 0$, and thus $\det(1 + (A^*A + A^* + A)) = 0$. Write $(A^*A + A^* + A) = P$. Then P is self-adjoint, P is trace class, and $\det(1+P) = 0$. Thus, by (iii), $\prod_{i=1}^{\infty} (1 + \lambda_i) = 0$, where λ_i are the eigenvalues of P. If none of the λ_i were -1 , then since $\sum |\lambda_i| < \infty$ (since P is traceclass), $\prod_{i=1}^{\infty} (1 + \lambda_i) \neq 0$. Thus, at least one of the $\lambda_i = 0$, and so $1 + P$ has non-trivial kernel, and hence $1 + A$ does, too.

Now let us show (vi). By definition

$$
\exp(A) - 1 = \sum_{k=1}^{\infty} \frac{A^k}{k!}.
$$

Since $||A^k||_1 \leq ||A^{k-1}|| ||A||_1$, this sum converges absolutely in the trace class norm, and thus converges to a trace-class operator. From proposition [2.2](#page-10-2) and properties of the validity of the formula in finite dimensions,

$$
\det(\exp(\Pi_n A \Pi_n)) = \exp(\text{Tr}(\Pi_n A \Pi_n)).
$$

From lemma [1.5,](#page-9-0) the right-hand side converges. To show the left-hand side converges, we need to show that $\|\exp(A) - 1 - (\exp(\Pi_n A \Pi_n) - 1)\|_1 \to 0$. By definition, we may control this by

$$
\sum_{k=1}^{\infty} \frac{\|(\Pi_n A \Pi_n)^k - A^k\|_1}{k!} = \sum_{k=1}^{\infty} \frac{\|(\Pi_n A)^k \Pi_n - A^k\|_1}{k!}
$$

.

Let us control the numerator of each term. With the usual trick, one has

$$
\|(\Pi_n A)^k \Pi_n - A^k\|_1 \le \sum_{j=0}^{k-1} \|A\|^j \|(\Pi_n - 1)A\|_1 \|\Pi_n A\|^{k-j-1} + \|A\|^{k-1} \|A(1 - \Pi_n)\|_1
$$

$$
\le (k+1) \|A\|^k \max(\|(1 - \Pi_n)A\|_1, \|A(1 - \Pi_n)\|_1).
$$

Therefore

$$
\|\exp(A) - \exp(\Pi_n A \Pi_n)\|_1 \le \max(\|(1 - \Pi_n)A\|_1, \|A(1 - \Pi_n)\|_1) \sum_{k=1}^{\infty} \frac{(k+1)\|A\|^k}{k!}.
$$

The sum converges, and the factor out front converges to 0 by lemma [1.5,](#page-9-0) which proves the claim.

 \Box

Let us end this note by briefly addressing derivatives. Suppose $a < b \in \mathbb{R}$ and $A(t)$, $t \in [a, b]$ is a family of trace-class operators, differentiable at $t = t_0$ ^{[3](#page-13-0)}.

Proposition 2.5 (Jacobi's formula). If $1 + A(t_0)$ is invertible, then $\det(1 + A(t))$ is differentiable at $t = t_0$ and

$$
\det(1 + A(t))'|_{t=t_0} = \det(1 + A(t_0)) \operatorname{Tr}((1 + A(t_0))^{-1} A'(t_0)).
$$

³Here, differentiability means that there exists a trace class $A'(t_0)$ such that $A(t_0+h) - A(t_0) = A'(t_0) + R_h$, where $||R_h||_1 \in o(h)$

Proof. Without loss of generality, let us assume that $t_0 = 0$. To start off, let us take the special case $A(t) = tB$, for some trace-class B. Then $A'(0) = B$. By definition,

$$
\det(1 + tB) = \sum_{k=0}^{\infty} \text{Tr}(\Lambda^k tB).
$$

Testing on k-blades, it is clear that $\Lambda^k tB = t^k \Lambda^k B$. Therefore,

$$
|\det(1 + tB) - \det(1 + 0) - \text{Tr}(B)| \le t^2 \sum_{k=2}^{\infty} t^{k-2} \text{Tr}(\Lambda^k B) \le t^2 \left(\sum_{k=2} \frac{\|B\|_1^k}{k!} \right),
$$

which is certainly in $o(t)$ as $t \to 0$. Now assume $A(t)$ is some aribtrary curve differentiable at 0. Since $A(t)$ is differentiable, we may write $A(t) = A(0) + tA'(0) + R_t$, where $||R_t||_1 \in o(t)$. Thus,

$$
(1 + A(0))^{-1}(1 + A(t)) = (1 + A(0))^{-1}(1 + A(0) + tA'(0) + R_t)
$$

= 1 + t(1 + A(0))^{-1}A'(0) + (1 + A(0))^{-1}R_t

is of the form $1 + K$, where K is trace-class. In particular

$$
\begin{aligned} \det(1 + A(t)) &= \det((1 + A(0))(1 + A(0))^{-1}(1 + A(t))) \\ &= \det(1 + A(0)) \det(1 + t(1 + A(0))^{-1}A'(0) + (1 + A(0))^{-1}R_t). \end{aligned}
$$

By lemma [2.3,](#page-11-0)

$$
|\det(1+t(1+A(0))^{-1}A'(0)+(1+A(0))^{-1}R_t)-\det(1+t(1+A(0))^{-1}A'(0))|
$$

\n
$$
\leq ||(1+A(0))^{-1}||o(t)\exp(C_t),
$$

where

$$
C_t = \max(||t(1 + A(0))^{-1}A'(0) + (1 + A(0))^{-1}R_t||_1||t(1 + A(0))^{-1}A'(0)||_1)
$$

\n
$$
\leq t||(1 + A(0))^{-1}||_1(||A'(0)||_1 + o(1))
$$

is uniformly bounded as $t \to 0$. This shows that

$$
|\det(1+t(1+A(0))^{-1}A'(0)+(1+A(0))^{-1}R_t)-\det(1+t(1+A(0))^{-1}A'(0))|\in o(t),
$$

and so

$$
\det(1 + t(1 + A(0))^{-1}A'(0) + (1 + A(0))^{-1}R_t) - 1 - \text{Tr}((1 + A(0))^{-1}A'(0))
$$

=
$$
\det(1 + t(1 + A(0))^{-1}A'(0)) - 1 - \text{Tr}((1 + A(0))^{-1}A'(0)) + o(t).
$$

But by the special case, this is just in $o(t)$. Thus, $det((1 + A(0))^{-1}(1 + A(t))$ is differentiable with derivative $\text{Tr}((1 + A(0))^{-1}A'(0))$, and so

$$
\det(1 + A(t)) = \det((1 + A(0)) \det((1 + A(0))^{-1}(1 + A(t)))
$$

iss differentiable, too, with derivative

$$
\det((1 + A(0)) \operatorname{Tr}((1 + A(t_0))^{-1}A'(0)),
$$

as desired. \square