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DETERMINANT

ETHAN Y. JAFFE

Let H be a (separable) Hilbert space.1 In this note we talk about the exterior products
ΛkH. The main application of this will be to define the Fredolm determinant det(1 + A),
for A trace class and to examine its properties.

1. Exterior Products

Consider the space ΛkH for k ∈ N , the (algebraic) vector space span of k-blades {v1 ∧
· · · ∧ vk : v1, . . . , vk ∈ H}. Formally, ΛkH is the quotient of the algebraic tensor product
H⊗k by the ideal generated by {v1 ⊗ · · · ⊗ vk : vi = vj for some i 6= j}. Observe that ΛkH
is by definition characterized by the property that whenever Φ : Hk → X is an alternating
multilinear map of vector spaces, then there exists a unique map ΛkH → X given by

Φ̃(v1 ∧ · · · ∧ vk) = Φ(v1, . . . , vk)

on k-blades. We equip ΛkH with an inner product defined by

(1.1) 〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 = det(〈vi, wj〉)

on k-blades and extending by linearity. Here, det(aij) denotes the determinant of the matrix
whose (i, j)th entry is aij. The space ΛkH is not a Hilbert space, so we hereafter replace
ΛkH with its complition under this inner product, which is a Hilbert space. When we need
to refer to the original, algebraic space, we will use the notation Λ̃kH.

The inner product (1.1) is not obviously well-defined, as k-blades don’t have unique rep-
resentations in Λ̃kH (in fact a k-blade may be written as the sum of other k-blades!). We
need to prove that it is well-defined.

Lemma 1.1. The inner product (1.1) is well-defined on Λ̃kH, and hence defines an actual
inner product.

Proof. Fix w1, . . . , wk ∈ H, and consider the map Φ : Hk → C defined by

Φ(v1, . . . , vk) = det(〈vi, wj〉).

Then Φ is is multilinear and alternating, and so by definition descends to a well-defined map
from Λ̃kH → C. This shows that 〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 is well-defined in the first
argument. Since it is clearly conjugate symmetric, it is well-defned in the second argument,
and so is well-defined overall. �

Lemma 1.2 (Properties of ΛkH.). The following hold:

1The separability assumption is mostly for notational convenience and to avoid having to talk about
strongly convergent nets of projections rather than more pedestrian convergent sequences.
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(i) Suppose that for 1 ≤ i ≤ k, vni is a sequence of vectors in H converging to vi ∈ H.
Then

vn1 ∧ · · · ∧ vnk → v1 ∧ · · · ∧ vk;
(ii) The span of the k-blades {v1 ∧ · · · ∧ vk} is dense in ΛkH;
(iii) If e1, e2, . . . is an orthonormal basis of H, then ΛkH has an orthonormal basis of the

form β = {ei1 ∧ · · · ∧ eik : i1 < · · · < ik}.

Proof. Let us prove (i). We compute

‖vn1 ∧ · · · ∧ vnk − v1 ∧ · · · ∧ vk‖2 = det(〈vni , vnj 〉) + det(〈vi, vj〉)− det(〈vni , vj)− det(〈vi, vnj 〉).

Since the determinant of a matrix is continuous in its entries, as n→∞ this converges to

det(〈vi, vj〉) + det(〈vi, vj〉)− det(〈vi, vj〉)− det(〈vi, vj〉) = 0.

(ii) is true since by definition Λ̃kH is the span of k-blades, and this space is dense in its
completion, ΛkH.

Now let us prove (iii). It is clear that β is an orthonormal set. We show that it is a basis.
Suppose v1, . . . , vk ∈ H and for all i

vi = lim
n→∞

wni

for wni ∈ span{e1, e2, . . .} is in the vector space span (i.e. is a finite linear combination).
From (i), we know that

wn1 ∧ · · · ∧ wnk → v1 ∧ · · · vk.
Each k-blade wn1 ∧ · · · ∧ wnk belongs to span β, so this shows that span β is dense in ΛkH,
which is sufficient. �

We now show that a bounded linear map A can be used to define an operator ΛkA on
ΛkH, and that this assignment is functorial.

Theorem 1.3. Let A : H → H be bounded. Then for each k there exists a unique bounded
operator ΛkA : ΛkH → ΛkH such that ΛkA acts on k-blades by

(ΛkA)(v1 ∧ · · · vk) = Av1 ∧ · · · ∧ Avk.

Furthermore, ‖ΛkA‖ ≤ ‖A‖k, and the map Λk : B(H)→ B(ΛkH) is continuous. Explicitly,
for A,B ∈ B(H) (and k ≥ 1)

(1.2) ‖ΛkA− ΛkB‖ ≤ k‖A−B‖max(‖A‖, ‖B‖)k−1.

The map Λk is functorial in the following sense:
(i) Λk(AB) = ΛkAΛkB for A,B bounded;
(ii) if A is invertible, then ΛkA is invertible with inverse ΛkA−1;
(iii) (ΛkA)∗ = ΛkA∗;
(iv) if Π : H → K is the orthogonal projection onto K, then ΛkΠ is the orthogonal

projection onto ΛkK, the closure of the span of k-blades {v1 ∧ · · · ∧ vk : vi ∈ K, 1 ≤
i ≤ k};

(v) if A is positive, then ΛkA is positive;
(vi) |ΛkA| = Λk|A|.
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If A is additionally trace class, then ΛkA is also trace class, and

‖ΛkA‖1 ≤
‖A‖k1
k!

.

Futhermore, the map Λk : `1(H) → `1(ΛkH) is continuous, with explicit bounds for A,B
trace class (for k ≥ 1)

(1.3) ‖ΛkA− ΛkB‖1 ≤ ‖A−B‖1
max(‖A‖1, ‖B‖1)k−1

(k − 1)!
.

To prove this, we need the following technical lemma:

Lemma 1.4. Let H be a Hilbert space and suppose X ⊆ H is dense. Let An be a sequence
of uniformly bounded operators such that Anx converges pointwise for each x ∈ X. Then An
converges strongly to a bounded operator A, and ‖A‖ ≤ lim sup‖An‖.

Proof. We show that for all v ∈ H, Anv is Cauchy, and thus An converges strongly to a
linear map A. Fix ε > 0. By density and uniform boundedness, there exists x ∈ X such
that for all n ∈ N, ‖Anv −Anx‖ < ε/3. Now for N large, if n,m > N , we may assume that
‖Anx− Amx‖ < ε/3. Thus if n,m > N

‖Anv − Amv‖ ≤ ‖Anv − Anx‖+ ‖Anx− Amx‖+ ‖Amv − Amx‖ < ε.

For v ∈ H, and ε > 0, again choose x with ‖Anx− Anv)‖ ≤ ε. Then

‖Av‖ = lim
n→infty

‖Anv‖ ≤ lim sup
n→∞

‖Anv − Anx‖+ ‖Anx‖ ≤ ε+ lim sup
n→∞

‖A‖‖x‖.

Since ‖x‖ ≤ ε+ ‖v‖, it follows that
‖Av‖ ≤ (1 + lim sup

n→∞
‖A‖)(ε) + lim sup

n→∞
‖A‖‖v‖.

Taking ε → 0 shows that ‖Av‖ ≤ lim supn→∞‖A‖‖v‖, which shows that A is bounded and
‖A‖ ≤ lim sup‖An‖. �

Proof of theorem 1.3. This theorem has many different parts, so we prove them separately.
Part 1: uniqueness and functoriality. Since the span of k-blades is dense, uniqueness
follows immediately. By density and linearity, functoriality will follow if we can check each
statement on a basis. For (i), observe that for any k-blade v1 ∧ · · · ∧ vk,

Λk(AB)(v1 ∧ · · · ∧ vk) = (ABv1) ∧ · · · ∧ (ABvk)

= ΛkA((Bv1) ∧ · · · ∧ (Bvk))

= ΛkAΛkB(v1 ∧ · · · ∧ vk).

Property (ii) follows from (i), since

ΛkA−1ΛkA = Λk1 = ΛkAΛkA−1,

and Λk1 is certainly the identity since it maps any k-blade to itself. For (iii), observe that
for any other k-blade w1 ∧ · · · ∧ wk,

〈ΛkA(v1 ∧ · · · ∧ vk), w1 ∧ · · · ∧ wk〉 = det(〈Avi, wj〉) = det(〈vi, Awj〉)
= 〈v1 ∧ · · · ∧ vk,ΛkAw1 ∧ · · · ∧ wk.
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For (iv), observe that ΛkΠ is self-adjoint (from (iii)) and idempotent (from (i)). Thus ΛkΠ
is the orthogonal projection onto its range. Certainly ΛkK ⊆ range(ΛkΠ), since ΛkΠ acts as
the identity on the wedge product of vectors in K. We now show that its range is contained
in ΛkK. If v = v1 ∧ · · · ∧ vk is a k-blade, then we may write vi = ui + wi where ui ∈ K and
wi⊥K. Thus

v = u1 ∧ · · · ∧ uk + w,

where w is a sum of wedges at least one of whose factors is orthogonal to K. Thus

ΛkΠv = u1 ∧ · · · ∧ uk + 0 ∈ ΛkK.

It follows that the range of ΛkΠ on the span of k-blades is contained in ΛkK, and hence the
range of ΛkΠ on all of ΛkH is contained in ΛkH, since the span of k-blades is dense and
ΛkK is closed by definition.

For (v), first assume that A is compact. Suppose e1, e2, . . . is an orthonormal basis for H of
eigenvectors of |A|. Then {ei1∧· · ·∧eik : i1 < · · · < ik} is an orthonormal basis of eigenvectors
of ΛkA. Since each associated eigenvalue is positive, it follows that ΛkA is positive. If A is
not compact, then fix any orthonormal basis e1, e2, . . . of H, and let Πn be the orthogonal
projection onto span{e1, . . . , en}. Then ΠnAΠn is positive, and so ΛkΠnΛkAΛkΠn is positive.
The operator ΛkΠn is by (iv) the orthogonal projection onto span{ei1 ∧ eik : i1 < · · · ik ≤ n},
and thus converges strongly to 1. Thus ΛkΠnΛkAΛkΠn converges strongly to ΛkA. Since a
strong limit of positive operators is positive, ΛkA is also positive.

For (vi), observe first that

(Λk|A|)2 = Λk|A|2 = ΛkA∗A = (ΛkA)∗ΛkA,

and Λk|A| is positive. Thus Λk|A| is a positive square root of (ΛkA)∗ΛkA = |ΛkA|2, and thus
must coincide with |ΛkA|.2
Part 2: Existence. Now let us show existence. We first suppose that A is positive and

compact. Let e1, e2, . . . be an orthonormal basis of eigenvctors of A, and suppose Aei = λiei.
Suppose λ1 is the largest eigenvalue. Let β = {ei1 ∧ · · · ∧ eik : i1 < · · · < ik}. We first define
a map B : span β → ΛkH, and then show it is bounded, and thus B extends to a bounded
map B : ΛkH → ΛkH. We then show that

B(v1 ∧ · · · ∧ vk) = Av1 ∧ · · · ∧ Avk,

and thus we can define ΛkA = B. For α = (α1, . . . , αk) an increasing k-tuple, set eα =
eα1 ∧ · · · ∧ eαk , and λα = λα1 · · ·λαk . Define B(eα) = λαeα, and then extend by linearity.
Thus, if v =

∑
aαeα is a finite linear combination,

‖Bv‖2 =
∑
|aα|2‖Beα‖2 =

∑
|aα|2λ2

α ≤ λ2k
1 ‖v‖2,

and so B extends to a bounded operator. In fact, this shows that ‖B‖ ≤ λk1 = ‖A‖k.
If v1, . . . , vk ∈ H are finite linear combinations of the ei, then it is easy to check that

B(v1 ∧ · · · ∧ vk) = Av1 ∧ · · · · · · ∧ Avk.

2Indeed, if P and Q are positive operators on a Hilbert space, and Q2 = P , then Q =
√
P . To show this,

suppose a > 0 is large enough so that σ(P ) ⊆ [0, a] and σ(Q) ⊆ [0,
√
a]. Suppose pn(x) are polynomials

converging to
√
x uniformly on [0, a]. Then pn(Q

2) = pn(P ) →
√
P . On the other hand, pn(x2) → x on

[0,
√
a], and so pn(Q2)→ Q.
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Indeed, suppose vi =
∑
ajiej for all i. Let N be the large index such that aNi is nonzero for

some i. Let Tk denote the set of injective maps from {1, . . . , k} → {1, . . . , N}. Then

B(v1 ∧ · · · ∧ vk) = B

(∑
σ∈Tk

k∏
i=1

a
σ(i)
i

k∧
i=1

eσ(i)

)

=
∑
σ∈Tk

k∏
i=1

a
σ(i)
i

k∧
i=1

λieσ(i)

=
∑
σ∈Tk

k∏
i=1

a
σ(i)
i

k∧
i=1

Aeα(σ)i

= Av1 ∧ · · · · · · ∧ Avk.
Now if v1, . . . , vk are not finite linear combinations, then we can write them as a limit of finite
linear combinations, and use the fact that B and A are bounded, together with lemma 1.2.

Now assume that A is positive, but not compact. If e1, e2, . . . is any orthonormal basis of
H, let Πn denote the orthogonal projection onto span{e1, . . . , en}. Then ΠnAΠn is positive
and compact, and so Λk(ΠnAΠn) exists. Using lemma 1.2 and the definition of Λk(ΠnAΠn)
on k-blades, it follows that for any k-blade v1 ∧ · · · ∧ vk

Λk(ΠnAΠn)v1 ∧ · · · ∧ vk = (ΠnAΠnv1) ∧ · · · ∧ (ΠnAΠnAvk)→ Av1 ∧ · · · ∧ Avk.
Thus by linearity Λk(ΠnAΠn) converges pointwise on the span of k-blades. Also,

‖ΛkΠnAΠn‖ ≤ ‖ΠnAΠn‖k ≤ ‖A‖k

for each n. Thus, since the span of k-blades is dense, by lemma 1.4, Λk(ΠnAΠn) converges
strongly to some operator B. Since we have already shown that

B(v1 ∧ · · · ∧ vk) = lim
n→∞

Λk(ΠnAΠn)(v1 ∧ · · · ∧ vk) = Av1 ∧ · · · · · · ∧ Avk

for any k-blade, we may set ΛkA = B.
Now let A be a partial isometry. Let e1, e2, . . . be an orthonormal basis of H which is the

result of taking the union of an orthonormal basis of kerA and kerA⊥ (and then relabelling),
and let β be as above. As above, we first define a map B : span β → ΛkH, show it is bounded,
and that it behaves correctly on k-blades. Define

B(eα) = Aeα1 ∧ · · · ∧ Aeαn .
If α and α′ are increasing k-tuples, then

〈Beα, Beα′〉 = det(〈A∗Aeαi , eα′j〉).

Now A∗A is precisely the projection onto kerA⊥. Thus, if any eαi ∈ kerA, 〈Beα, Be′α〉 = 0.
Otherwise (i.e. all eαi are in kerA⊥), it is equal to

det(〈eαi , eα′j〉) = 〈eα, eα′〉.

Now, if v =
∑
aαeα is a finite linear combination, let S be the collection of those α such all

eαi ∈ kerA⊥. Then

‖Bv‖2 =
∑
α,α′

aαaα′〈Beα, Be′α〉
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=
∑
α∈S,α′

aαaα′〈eα, eα′〉

=
∑
α∈S

|aα|2 ≤ ‖v‖2.

It follows that B is bounded and has norm precisely 1 (which is of course also ‖A‖k). The
proof that B behaves correctly on k-blades is the same as in the case that A is compact and
positive. Thus in this case, too, can we set ΛkA = B.

Now for the general case. Suppose A is bounded. Write A = U |A| the polar decomposition,
where U is a partial isometry and |A| is positive. Define

ΛkA = ΛkUΛk|A|,

both factors of which exist. We need to show that ΛkA behaves properly on k-blades. But
this is obvious, as for any k-blade v1 ∧ · · · ∧ vk,

ΛkUΛk|A|v1 ∧ · · · ∧ vk = ΛkU(|A|v1 ∧ · · · ∧ |A|vk) = (U |A|v1) ∧ · · · ∧ (U |A|vk).

Certainly
‖ΛkA‖ ≤ ‖ΛkU‖‖Λk|A|‖ ≤ ‖|A|‖k = ‖A‖k.

Part 4: Continuity. Suppose A, B are bounded operators. Let e1, e2, . . . be an or-
thonormal basis of H, and let Πn denote the projection on {e1, . . . , en}. Since ΛkΠn is the
projection onto span{ei1 ∧ eik : i1 < · · · ik ≤ n}, ΛkΠn(ΛkA − ΛkB)ΛkΠn converges in the
strong operator topology ΛkA − ΛkB. Since the operator norm is lower semicontinuous in
the strong operator topology, it suffices to prove (1.2) with A and B replaced by ΠnAΠn

and ΠnBΠn, respectively. In other words, we may assume that H is finite-dimensional with
dimH = n (and hence k ≤ n since the spaces ΛkH = 0 for k > n). For t ∈ [0, 1], let
C(t) = tA+ (1− t)B. For α an increasing k-tuple and v ∈ ΛkH, define

γα,v(t) = 〈ΛkC(t)eα, v〉,

which is smooth on [0, 1] (since v may be expanded in a finite basis of ΛkH). In particular,

(1.4) 〈(ΛkA− ΛkB)eα, v〉 = γα,v(1)− γα,v(0) =

∫ 1

0

γ′α,v(t) dt.

We now compute γ′α,v. For 1 ≤ i ≤ k, denote by êαi the wedge of all eαi (in order) except eαi .
Write A− B = V |A− B|. Since H is finite-dimensional, we may assume that V is unitary.
We may also assume (by the spectral theorem) that the basis {e1, . . . , en} of H is a basis of
eigenvectors for |A−B|, with eigenvalues λi ≥ 0. Write V ei = fi, so that {f1, . . . , fn} is an
orthonormal basis. Use the notation fα = fα1 ∧ · · · ∧ fα` for an increasing `-tuple α. Using
that the wedge product is continuous, it is easy to check that

γ′α,v(t) =
k∑
i=1

〈eα1 ∧ · · · ∧eαi−1
∧C ′(t)eαi ∧ eαi+1

∧ · · · ∧ eαk , v〉

=
k∑
i=1

(−1)i+1〈(A−B)eαi ∧ Λk−1C(t)êαi , v〉
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=
k∑
i=1

(−1)i+1λαi〈fαi ∧ Λk−1C(t)êαi , v〉.

For all j, the wedge map fj∧ : Λk−1H → ΛkH has norm 1. Let ιfj denote its adjoint which
also has norm 1. Then we can rewrite the previous display as

(1.5) γ′α,v(t) =
k∑
i=1

(−1)i+1λαi〈Λk−1C(t)êαi , ιfαiv〉.

For v ∈ ΛkH, let vα be the coefficients in the expansion v =
∑

α vαeα. Then, from (1.4),

‖ΛkA− ΛkB‖ = sup
‖v‖=‖w‖=1

∣∣∣∣∣∑
α

vα〈(ΛkA− ΛkB)eα, w〉

∣∣∣∣∣
≤ sup
‖v‖=‖w‖=1

∫ 1

0

∣∣∣∣∣∑
α

vαγ
′
α,w(t) dt

∣∣∣∣∣ dt.
(1.6)

Fix some v, w with ‖v‖ = ‖w‖ = 1. Plugging in (1.5) for γ′α,w(t) and applying Cauchy-
Schwarz inequality yields
(1.7)∣∣∣∑ vαγ

′
α,w(t) dt

∣∣∣ =

∣∣∣∣∣∑
α

vαγ
′
α,v(t)

∣∣∣∣∣ ≤
(∑

α,i

|vα|2|λαi |2
)1/2(∑

α,i

|Λk−1C(t)êαi , ιfαiw〉|
2

)1/2

.

The first factor is bounded by
√
k(supλi)‖v‖ =

√
k‖A−B‖.

For the second, we may rewrite the sum instead over all pairs (j, β), where 1 ≤ j ≤ n, and
β is an increasing (k − 1)-tuple none of whose terms is j. This yields∑

α,i

|〈Λk−1C(t)êαi , ιfαiv〉|
2 =

∑
β,j

|〈eβ,Λk−1C(t)∗ιfjw〉|2.

Taking the sum first over β, one bounds this by∑
j

‖Λk−1C(t)∗ιfjw‖2 ≤ ‖Λk−1C(t)∗‖2
∑
j

‖ιfjw‖2.

The first factor is bounded by ‖C(t)∗‖2(k−1) = ‖C(t)‖2(k−1). For the second factor, expand
w =

∑
wαfα. Notice that ιfjfα = 0 if j is not a term in α. Otherwise, ιfjfα = ±fα′ , where

α′ is the increasing (k− 1)-tuple obtained from α by removing j (the sign depends on j and
α). Thus, 〈ιfjfα, ιfjfβ〉 = δα=β, the Kronecker δ, and

‖ιfjw‖2 =
∑
α,β

wαwβ〈ιfjeα, ιfjeβ〉 =
∑
α3j

|wα|2,

where the sum ranges over all those α one of whose terms is j. Thus∑
j

‖ιfjw‖2 =
∑
j

∑
α3j

|wα|2.
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In this sum, each term |wα|2, for an increasing k-tuple α, appears precisely k times: once for
each j = αi, 1 ≤ i ≤ k. We conclude that∑

j

‖ιfjw‖2 = k
∑
α

|wα|2 = k‖w‖2 = k.

Putting it all together, the second factor on the last line of (1.7) is bounded by ‖C(t)‖j−1
√
k,

and recalling the bound on the first factor, (1.7) is bounded by

k‖A−B‖‖C(t)‖k.
Now

‖C(t)‖ ≤ (1− t)‖A‖+ t‖B‖ ≤ max(‖A‖, ‖B‖).
Hence, from (1.6),

‖ΛkA− ΛkB‖ ≤
∫ 1

0

k‖A−B‖max(‖A‖, ‖B‖)k dt ≤ k‖A−B‖max(‖A‖, ‖B‖)k−1,

which is the desired bound.
Part 5: Trace class operators. Now let us suppose A is trace class. We prove that

ΛkA is trace class, i.e. |ΛkA| is trace class. We know that |ΛkA| = Λk|A|, so replacing A
with |A|, we can assume that A is positive. Since |A| is compact, by the spectral theorem
we can find e1, e2, . . ., an orthonormal basis of eigenvectors of A, and suppose Aei = λiei.
Let β = {ei1 ∧ · · · ∧ eik : i1 < · · · < ik}. Then

Tr(ΛkA) =
∑

i1<···<ik

λi1 · · ·λik

= lim
n→∞

∑
i1<···<ik≤n

λi1 · · ·λik

= lim
n→∞

∑
i1<···<ik≤n

1

k!

∑
σ∈Sk

λiσ(1) · · ·λiσ(k)

= lim
n→∞

1

k!

∑
(i1,...,ik),ik≤n, has distinct entries

λi1 · · ·λik

≤ lim
n→∞

1

k!

∑
(i1,...,ik),ik≤n, a k-tuple

λi1 · · ·λik

= lim
n→∞

1

k!

(∑
i=1n

λi

)k

=
Tr(A)k

k!
.

Thus A is trace class and ‖A‖1 ≤ ‖A‖k1
k!

.
Part 6: Continuity in the trace norm.The proof starts very similarly to part 4,

the proof of the continuity in the operator norm, and we use the same notation. Suppose
A, B are trace-class operators. Let e1, e2, . . . be an orthonormal basis of H, and let Πn

denote the projection on {e1, . . . , en}. Recall that ΛkΠn is the projection onto span{ei1 ∧
eik : i1 < · · · ik ≤ n}. We will show below in lemma 1.5 that this means that, ΠnAΠn → A,

8



ΠnBΠn → B, ΛkΠnAΠn → ΛkA, ΛkΠnBΠn → ΛkB, all in the trace norm. Thus, it suffices
to prove (1.3) with A and B replaced by ΠnAΠn and ΠnBΠn, respectively. In other words,
we may assume that H is finite-dimensional with dimH = n.

Let C(t), γα,v(t), fα, λi be as in part 4. Write ΛkA− ΛkB = U |ΛkA− ΛkB| for the polar
decomposition, so that |ΛkA− ΛkB| = U∗(ΛkA− ΛkB). Then, from (1.4),

‖ΛkA− ΛkB‖1 = |Tr(U∗(ΛkA− ΛkB))|

=

∣∣∣∣∣∑
α

〈ΛkA− ΛkB)eα, Ueα〉

∣∣∣∣∣
≤
∫ 1

0

∣∣∣∣∣∑
α

γ′α,Ueα(t)

∣∣∣∣∣ dt.
(1.8)

We will bound the integrand uniformly. Plugging in (1.5) for the integrand yields

(1.9)
∑
α

γ′α,Ueα(t) =
∑
α,i

(−1)i+1λαi〈Λk−1C(t)êαi , ιfαiUeα〉.

We may rewrite the sum instead over all pairs (j, β), where 1 ≤ j ≤ n, and β is an increasing
(k − 1)-tuple none of whose terms is j. To do so, notice that eα = (−1)i+1eαi ∧ êαi . Thus,
the sum is equal to

(1.10)
∑
α

γ′α,Ueα(t) =
∑
j,β

λj〈Λk−1C(t)eβ, ιfjU(ej ∧ eβ)〉.

For j fixed, let Uj : Λk−1H → Λk−1H be the map w 7→ ιfjU(ej ∧w), which has norm at most
1. Let Γj : H → H be the projection off of ej. Then Λk−1Γjeβ = eβ precisely when j is not
an index in β, and is 0 otherwise. Then, for j fixed, the the sum over β is just

Tr((Λk−1ΓjU
∗
j Λk−1C(t)Λk−1Γj),

which is bounded by

‖Λk−1Γj‖2‖Λk−1U∗j ‖‖Λk−1C‖1 ≤
‖C‖k−1

1

(k − 1)!
,

using the bounds we have proven previously. Thus, (1.10) is bounded by∣∣∣∣∣∑
α

γ′α,Ueα(t)

∣∣∣∣∣ =

∣∣∣∣∣∑
j

λj Tr((Λk−1ΓjU
∗
j Λk−1C(t)Λk−1Γj)

∣∣∣∣∣ ≤
(∑

j

λj

)
‖C(t)‖k−1

1

(k − 1)!

= ‖A−B‖1
‖C(t)‖k−1

1

(k − 1)!.

(1.11)

However,
‖C(t)‖1 ≤ (1− t)‖A‖1 + t‖B‖1 ≤ max(‖A‖1, ‖B‖1).

Therefore, returning to (1.8) and using (1.11)

‖ΛkA− ΛkB‖ ≤
∫ 1

0

∣∣∣∣∣∑
α

γ′α,Ueα(t) dt

∣∣∣∣∣ dt
9



≤
∫ 1

0

‖A−B‖1
max(‖A‖1, ‖B‖1)k−1

(k − 1)!
dt

≤ ‖A−B‖1
max(‖A‖1, ‖B‖1)k−1

(k − 1)!
,

which is the desired bound. �

We now prove the lemma about convergence in the trace class, which we will also use
later.

Lemma 1.5. Let H be a Hilbert space, and let E1 ⊆ E2 ⊆ · · · be a family of strictly
increasing finite-dimensional subspaces of H whose closure is dense. Let Πi be the projection
on Ei. Then A(1 − Πn) → 0 and (1 − Πn)A → 0 in the trace class norm. In particular,
ΠnAΠn → A in the trace-class norm.

Proof. The second claim follows from the first by bounding

‖ΠnAΠn − A‖1 ≤ ‖(Πn − 1)A‖‖Πn‖+ ‖A(Πn − 1)‖1.

The statement for (1− Πn)A follows from that for A(1− Πn) by taking adjoints.
Write A = U |A| and A(1− Πn) = V |A(1− Πn)| for the polar decompositions. Then

|A(1− Πn)| = V ∗U |A|(1− Πn) = (V ∗U |A|1/2)(|A|1/2(1− Πn)).

Set W = V ∗U . We may pick an orthonormal basis {e1, . . . , em1} of E1, extend it to an
orthonormal basis {e1, . . . , em2} of E2, etc, obtaining an orthonormal basis e1, e2, . . . of H,
such that for mi = dimEi, {e1, . . . , emi} is an orthonormal basis for Ei. Then

‖A(1− Πn)‖1 = |Tr(|A(1− Πn)|)| =

∣∣∣∣∣
∞∑
i=1

〈|A|1/2(1− Πn)ei, |A|1/2W ∗ei〉

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

i=mn

〈|A|1/2ei, |A|1/2W ∗ei〉

∣∣∣∣∣
≤

(
∞∑

i=mn

‖|A|1/2ei‖2

)1/2( ∞∑
i=mn

‖|A|1/2W ∗ei‖2

)1/2

.

The square of the second factor is bounded, uniformly in n, by
∞∑
i=1

‖|A|1/2W ∗ei‖2 = Tr(W |A|W ∗) ≤ ‖A‖1.

The square of the first factor is
∞∑

i=mn

〈〈|A|ei, ei〉,

which goes to 0 as n→∞. �
10



2. The Fredholm determinant

We can now define the Fredholm determinant.

Definition 2.1. Suppose A : H → H is trace class. Then define

detFrd(1 + A) =
∞∑
k=0

Tr(ΛkA),

interpreting Tr(Λ0A) = 1. This makes sense since by theorem 1.3 |Tr(ΛkA)| ≤ ‖A‖k1
k!

for
all k, and hence the defining series is absolutely summable.

Let us check that this agrees with the usual definition in the case that H is finite-
dimensional. In fact,

Proposition 2.2. Suppose K ⊆ H is finite-dimensional, and A = ΠAΠ, where Π is the
orthogonal projection onto K. Then, with detus interpreted as the usual determinant of a
linear map between fininite dimensional spaces,

detus((1 + A)|K) = detFrd(1 + A).

Proof. Suppose dimK = n. Fix k > n, and a k-blade v = v1 ∧ · · · ∧ vk. Write vi = ui + wi,
where ui ∈ K and wi⊥K. Then v = u+w, where u is a wedge of k+ 1 vectors in K, and is
hence 0, and w is a sum of wedges of terms such as at least one constituent factor per term
is perpendicular to K. So ΛkAv = 0 + ΛkAw = 0. So ΛkA ≡ 0 if k > n. Therefore the sum∑∞

k=0 Tr(ΛkA) only goes up to k = n. Suppose e1, . . . , en, en+1, . . . is an orthonormal basis
of H such that e1, . . . , en is an orthonormal basis of K. Reall that

Λn(1 + A)e1 ∧ · · · ∧ en = detus((1 + A)|K)e1 ∧ · · · ∧ en.
On the other hand

Λn(1 + A)e1 ∧ · · · ∧ en = (1 + A)e1 ∧ · · · ∧ (1 + A)en.

In the expansion wedge product, each term is a wedge of factors of the form Aei or ej. Set
B0 = 1 and B1 = A. Let σ ⊆ {1, . . . , n}, and interpret σ : {1, . . . n} → {0, 1}, where
σ(i) = 1 if i ∈ σ. Then

Λn(1 + A)e1 ∧ · · · ∧ en =
∑
σ

Bσ(1)e1 ∧ · · · ∧Bσ(n)en.

For a fixed σ = {i1, · · · , ik} ⊆ {1, . . . , n}, with {1, . . . , n} \ σ = {jk+1, . . . , jn}, the corre-
sponding term above is equal to

(2.1) ± Aei1 ∧ · · ·Aeik ∧ ejk+1
∧ · · · ∧ ejn = ±(ΛkA)(ei1 ∧ · · · ∧ eik) ∧ (ejk+1

∧ · · · ∧ ejn),

with the sign ± depending on how many swaps are required to turn eσ(1) ∧ · · · ∧ eσ(n) into
ei1 ∧ · · · ∧ eik ∧ ejk+1

∧ · · · ∧ ejn . Let us assume without loss of generality that i1 < · · · < ik,
j1 < · · · < jk. Expanding in an orrthonormal basis, we may write

(2.2) (ΛkA)(ei1 ∧ · · · ∧ eik) =
∑

`1<···<`k

〈(ΛkA)(ei1 ∧ · · · ∧ eik), e`1 ∧ · · · ∧ e`k〉e`1 ∧ · · · ∧ e`k .

Let us examine the term corresponding to {`1 < · · · < `k} in this sum. If any `p > n, then
this term is 0, since A is 0 on the orthocomplement to K. If `p = jr for some p and r, then
the wedge product of this term with ejk+1

∧ · · · ∧ ejn is 0. Thus the only term in (2.2) which
11



survives after wedging with ejk+1
∧ · · · ∧ ejn is the term corresponding to `p = ip for all p.

Plugging (2.2) into (2.1) and using this fact yields

± Aei1 ∧ · · ·Aeik ∧ ejk+1
∧ · · · ∧ ejn

= ±〈(ΛkA)(ei1 ∧ · · · ∧ eik), ei1 ∧ · · · ∧ eik〉ei1 ∧ · · · ∧ eik ∧ ejk+1
∧ · · · ∧ ejn

= 〈(ΛkA)(ei1 ∧ · · · ∧ eik), ei1 ∧ · · · ∧ eik〉e1 ∧ · · · ∧ en.
Since

〈(ΛkA)(e`1 ∧ · · · ∧ e`k), e`1 ∧ · · · ∧ e`k〉 = 0

if any `p > n, summing

〈(ΛkA)(ei1 ∧ · · · ∧ eik), ei1 ∧ · · · ∧ eik〉e1 ∧ · · · ∧ en
over all subsets σ = {i1 < · · · < ik} ⊆ {1, . . . , n} is the same as summing it over all sets
{i1 < · · · < ik} ⊆ N, and thus the sum equals

Tr(ΛkA)e1 ∧ · · · ∧ en.
Recalling the definition of Bj, we have thus shown that∑

#σ=k

Bσ(1)e1 ∧ · · · ∧Bσ(n)en = Tr(ΛkA)e1 ∧ · · · ∧ en.

The sum of this over all k ≤ n is thus on the one had equal to detus((1+A)|K)e1∧· · ·∧en, as
we have shown, and is on the other hand equal to

(∑n
k=0 Tr(ΛkA)

)
e1 ∧ · · · ∧ en = detFrd(1 +

A). �

We will use proposition 2.2 to approximate the Fredholm determinant of an operator by
finite-rank approximations. Fortunately, we have lemma 1.5 which will guarantee that the
finite-dimensional approximations converge in the trace-class norm. Using the continuity of
Λk : `1(H) → `1(ΛkH) will allow us to show that the Fredholm determinant is continuous,
and thus the finite-dimensional approximations converge. Indeed:

Lemma 2.3. The Fredholm determinant is continuous in the trace-class norm. Explicitly,
if A and B are trace class, then

| det(1 + A)− det(1 +B)| ≤ ‖A−B‖1 exp(max(‖A‖1, ‖B‖1)).

Proof. This follows easily from theorem 1.3. Indeed,

| det(1 + A)− det(1 +B)| ≤
∑
k>1

|Tr(ΛkA− ΛkB)| ≤
∑
k>1

‖A−B‖1
max(‖A‖1, ‖B‖1)k−1

(k − 1)!

(the k = 0 term vanishes since Tr(Λ0A) = Tr(Λ0B) = 1). The lemma follows. �

Theorem 2.4 (Properties of the determinant). Suppose A, B are trace class. Then
(i) det(1 + A∗) = det(1 + A);
(ii) det(1 + A) det(1 +B) = det((1 + A)(1 +B));
(iii) if A is self-adjoint with eigenvalues λ1, λ2, . . ., then det(1 + A) =

∏∞
i=1(1 + λi);

(iv) if X is invertible, then det(1 +XAX−1) = det(1 + A);
(v) det(1 + A) = 0 if and only if 1 + A is not invertible;
(vi) exp(A)− 1 is trace class and det(exp(A)) = exp(Tr(A)).

12



Proof. Let e1, e2 be an orthonomal basis for H and let Πn be the orthogonal projection onto
span{e1, . . . , en}.

Let us first prove (i). For each n, oberserve that

((1 + ΠnAΠn)|range(Πn))
∗ = (1 + ΠnA

∗Πn)|range(Πn).

It follows from proposition 2.2 that
det(1 + ΠnA

∗Πn) = detus(((1 + ΠnAΠn)|range(Πn))
∗)

= detus((1 + ΠnAΠn|range(Πn)) = det(1 + ΠnAΠn).
(2.3)

By lemma 1.5, ΠnAΠn, and ΠnA
∗Πn converge to A and A∗, respectively, in the trace class

norm, and thus by lemma 2.3, det(1+ΠnAΠn)→ det(1+A) and similarly det(1+ΠnBΠn)→
det(1 +B). Taking limits in (2.3) proves (i).

Now let us show (ii). Again from proposition 2.2, for n ≥ N

det(1 + ΠnAΠn) det(1 + ΠnBΠn) = det(1 + ΠnAΠn + ΠnBΠn + ΠnAΠnBΠn).

As above, the left-hand side converges to det(1 +A) det(1 +B). For the right-hand side, we
know that ΠnAΠn and ΠnBΠnB converge to A and B in the trace-class norm, so to establish
that the right-hand side converges to det(1 + A + B + AB) = det((1 + A)(1 + B)), we just
need to show that ΠnAΠnBΠn → AB in the trace-class norm. Indeed, we may bound

‖ΠnAΠnBΠn−AB‖1 ≤ ‖(Πn−1)A‖1‖ΠnBΠn‖+‖A(Πn−1)‖1‖BΠn‖+‖A‖‖B(Πn−1)‖1 → 0.

Now let us show (iii). Assume without loss of generality that e1, e2 · · · are eigenvectors of
A, and that Aei = λiei. Then from proposition 2.2

det(1 + ΠnAΠn) =
n∏
i=1

(1 + λi).

Taking n→∞ as usual (and using that
∑
|λi| <∞) shows (iii).

Next let us show (iv). Let Kn = range(Πn), and let Γn be the orthogonal projection onto
K ′n = X(Kn). We know from proposition 2.2 that

det(1 + ΠnAΠn) = detus((1 + ΠnAΠn)|Kn)

= detus(X|Kn(1 + ΠnAΠn)|KnX−1|K′n)

= detus t((1 +XΠnAΠnX
−1)|K′n)

= det(1 + (ΓnXΠnAΠnX
−1Γn)|K′n) = det(1 + ΓnXΠnAΠnX

−1Γn).

As usual, the left-hand side converges to det(1 + A), and the right-hand side converges to
det(1 + XAX−1) provided Tn := ΓnXΠnAΠnX

−1Γn converges in the trace-class norm to
XAX−1. As in the proof of lemma 1.5, we may take an orthornormal basis f1, f2, . . . such
that f1, . . . , fn is a basis of K ′n, and thus Γn is the orthogonal projection onto {f1, . . . , fn}.
Observe that by definition ΓnXΠn = XΠn. Therefore

‖Tn −XAX−1‖1 ≤‖X‖‖(Πn − 1)A‖1‖ΠnX
−1Γn‖

+ ‖X‖‖A(Πn − 1)‖1‖X−1Γn‖+ ‖X‖‖AX−1(1− Γn)‖1 → 0

(recall that AX−1 is trace class). This shows (iv).
Finally we show (v). Suppose 1 + A is not invertible. Since 1 + A is Fredholm of index

0, it follows that 1 + A has closed range, and dim ker(1 + A) = dim range(1 + A)⊥. In
13



particular, 1+A has a null space containing at least one unit-norm vector e1. Extend e1 to an
orthonormal basis e1, e2, . . . of H. Let Πn be the projection onto e1, . . . , en. By assumption,
Ae1 = −e1. Thus ΠnAΠne1 = −e1, and so (1 + ΠnAΠn)e1 = 0. Thus 0 = det(1 + ΠnAΠn).
As usual, this converges to det(1 + A), which shows that it is 0.

Now suppose det(1 + A) = 0. Then, by (i), det(1 + A∗) = 0, and so by (ii), det((1 +
A)∗(1+A)) = 0, and thus det(1+(A∗A+A∗+A)) = 0. Write (A∗A+A∗+A) = P . Then P
is self-adjoint, P is trace class, and det(1 + P ) = 0. Thus, by (iii),

∏∞
i=1(1 + λi) = 0, where

λi are the eigenvalues of P . If none of the λi were −1, then since
∑
|λi| < ∞ (since P is

traceclass),
∏∞

i=1(1 + λi) 6= 0. Thus, at least one of the λi = 0, and so 1 + P has non-trivial
kernel, and hence 1 + A does, too.

Now let us show (vi). By definition

exp(A)− 1 =
∞∑
k=1

Ak

k!
.

Since ‖Ak‖1 ≤ ‖Ak−1‖‖A‖1, this sum converges absolutely in the trace class norm, and thus
converges to a trace-class operator. From proposition 2.2 and properties of the validity of
the formula in finite dimensions,

det(exp(ΠnAΠn)) = exp(Tr(ΠnAΠn)).

From lemma 1.5, the right-hand side converges. To show the left-hand side converges, we
need to show that ‖exp(A) − 1 − (exp(ΠnAΠn) − 1)‖1 → 0. By definition, we may control
this by

∞∑
k=1

‖(ΠnAΠn)k − Ak‖1

k!
=
∞∑
k=1

‖(ΠnA)kΠn − Ak‖1

k!
.

Let us control the numerator of each term. With the usual trick, one has

‖(ΠnA)kΠn − Ak‖1 ≤
k−1∑
j=0

‖A‖j‖(Πn − 1)A‖1‖ΠnA‖k−j−1 + ‖A‖k−1‖A(1− Πn)‖1

≤ (k + 1)‖A‖k max(‖(1− Πn)A‖1, ‖A(1− Πn)‖1).

Therefore

‖exp(A)− exp(ΠnAΠn)‖1 ≤ max(‖(1− Πn)A‖1, ‖A(1− Πn)‖1)
∞∑
k=1

(k + 1)‖A‖k

k!
).

The sum converges, and the factor out front converges to 0 by lemma 1.5, which proves the
claim.

�

Let us end this note by briefly addressing derivatives. Suppose a < b ∈ R and A(t),
t ∈ [a, b] is a family of trace-class operators, differentiable at t = t0,3.

Proposition 2.5 (Jacobi’s formula). If 1 + A(t0) is invertible, then det(1 + A(t)) is differ-
entiable at t = t0 and

det(1 + A(t))′|t=t0 = det(1 + A(t0)) Tr((1 + A(t0))−1A′(t0)).

3Here, differentiability means that there exists a trace class A′(t0) such that A(t0+h)−A(t0) = A′(t0)+Rh,
where ‖Rh‖1 ∈ o(h)
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Proof. Without loss of generality, let us assume that t0 = 0. To start off, let us take the
special case A(t) = tB, for some trace-class B. Then A′(0) = B. By definition,

det(1 + tB) =
∞∑
k=0

Tr(ΛktB).

Testing on k-blades, it is clear that ΛktB = tkΛkB. Therefore,

| det(1 + tB)− det(1 + 0)− Tr(B)| ≤ t2
∞∑
k=2

tk−2 Tr(ΛkB) ≤ t2

(∑
k=2

‖B‖k1
k!

)
,

which is certainly in o(t) as t→ 0. Now assume A(t) is some aribtrary curve differentiable at
0. Since A(t) is differentiable, we may write A(t) = A(0) + tA′(0) +Rt, where ‖Rt‖1 ∈ o(t).
Thus,

(1 + A(0))−1(1 + A(t)) = (1 + A(0))−1(1 + A(0) + tA′(0) +Rt)

= 1 + t(1 + A(0))−1A′(0) + (1 + A(0))−1Rt

is of the form 1 +K, where K is trace-class. In particular
det(1 + A(t)) = det((1 + A(0))(1 + A(0))−1(1 + A(t)))

= det(1 + A(0)) det(1 + t(1 + A(0))−1A′(0) + (1 + A(0))−1Rt).

By lemma 2.3,
| det(1 + t(1 + A(0))−1A′(0) + (1 + A(0))−1Rt)− det(1 + t(1 + A(0))−1A′(0))|

≤ ‖(1 + A(0))−1‖o(t) exp(Ct),

where
Ct = max(‖t(1 + A(0))−1A′(0) + (1 + A(0))−1Rt‖1‖t(1 + A(0))−1A′(0)‖1)

≤ t‖(1 + A(0))−1‖1(‖A′(0)‖1 + o(1))

is uniformly bounded as t→ 0. This shows that
| det(1 + t(1 + A(0))−1A′(0) + (1 + A(0))−1Rt)− det(1 + t(1 + A(0))−1A′(0))| ∈ o(t),

and so
det(1 + t(1 + A(0))−1A′(0) + (1 + A(0))−1Rt)− 1− Tr((1 + A(0))−1A′(0))

= det(1 + t(1 + A(0))−1A′(0))− 1− Tr((1 + A(0))−1A′(0)) + o(t).

But by the special case, this is just in o(t). Thus, det((1 +A(0))−1(1 +A(t)) is differentiable
with derivative Tr((1 + A(0))−1A′(0)), and so

det(1 + A(t)) = det((1 + A(0)) det((1 + A(0))−1(1 + A(t))

iss differentiable, too, with derivative
det((1 + A(0)) Tr((1 + A(t0))−1A′(0)),

as desired. �
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